1,033
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Optimization of a raceway pond system for wastewater treatment: a review

, &
Pages 422-435 | Received 13 Dec 2017, Accepted 04 Jan 2019, Published online: 11 Feb 2019

References

  • Chisti Y. Biodiesel from microalgae. J Biotechnol Adv. 2007;25:294–306.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–648.
  • Ranjbar R, Inoue R, Katsuda T, et al. High efficiency production of astaxanthin in an airlift photobioreactor. J Biosci Bioeng. 2008;106:204–207.
  • Olaizola M. Commercial development of microalgal biotechnology: from test tube to the marketplace. Biomol Eng. 2003;20:459–466.
  • Molina GE. Mass culture methods. In: Flickinger MC, Drew SW, editor. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Vol. 3; New York (NY): John Wiley & Sons; 1999. p. 1753–1769.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Rai LC, Gaur JP, Kumar HD. Phycology and heavy metal pollution. Biolog Rev. 1981;56:99–151.
  • Redalje DG, Duerr EO, De la Noüe J, et al., Algae as ideal waste removers: biochemical pathways. In: Huntley ME, editor. Biotreatment of agricultural wastewater. Boca Raton (FL): CRC Press; 1989. p. 91–110.
  • Kang Z, Kim BH, Ramanan R, et al. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol. 2015;25:109–118.
  • Kim B, Kang Z, Ramanan R, et al. Nutrient removal and biofuel production in high rate algal pond HRAP. using real municipal wastewater. J Microbiol Biotechnol. 2014;4:1123–1132.
  • Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. J Bioresour Technol. 2011;102:35–42.
  • Cho D-H, Ramanan R, Heo J, et al. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. J Bioresour Technol. 2015;191:481–487.
  • De la Noue J, De Pauw N. The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv. 1988;6:725–770.
  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Sci. 2012;19:257–275.
  • Larsdotter K. Wastewater treatment with microalgae – a literature review. J Water Manag Res. 2006:6231–6238.
  • Tebbani S, Lopes F, Filali R, et al. CO2 Biofixation by microalgae: automation process. ISTE editions; London, United kingdom. 2014.
  • de Godos I, Arbib Z, Lara E, et al. Evaluation of high rate algae ponds for treatment of anaerobically digested wastewater: effect of CO2 addition and modification of dilution rate. Bioresour Technol. 2016;220:253–261.
  • Mehrabadi A, Farid MM, Craggs R. Variation of biomass energy yield in wastewater treatment high rate algal ponds. Algal Res. 2016;15:143–151.
  • Tsai DD-W, Ramaraj R, Chen PH. Carbon dioxide bio-fixation by algae of high rate pond on natural water medium. Ecologic Eng. 2016;92:106–110.
  • Raso S, van Genugten B, Vermuë M, et al. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity. J Appl Phycol. 2012;24:863–871.
  • Hreiz R, Sialve B, Morchain J, et al. Experimental and numerical investigation of hydrodynamics in raceway reactors used for algaculture. Chem Eng J. 2014;250:230–239.
  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol. 1999;70:313–321.
  • Bitog JP, Lee IB, Oh HM, et al. Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation. J Biosys Eng. 2014;122:42–61.
  • Tredici MR. Mass production of microalgae: photobioreactors. In: Richmond A, editor. Handbook of microalgal culture. Oxford: Blackwell Science; 2014. p. 178–214.
  • Borowitzka MA, Moheimani NR. Algae for biofuels and energy. Dordrecht (Netherlands): Springer; 2013.
  • Mendoza JL, Granados MR, Godos ID, et al. Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. J Biomass Bioenerg. 2013;54:267–275.
  • Harun R, Singh M, Forde GM, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustainable Energy Rev. 2010;14:1037–1047.
  • Oswald WJ, Golueke CG. Large scale production of microalgae. In: Mateless RI, Tannenbaum SR, editors. Single cell protein. Cambridge (MA): MIT Press; 1968: p. 271–305.
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9:165–177.
  • Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia. 2004;512:33–37.
  • Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog. 2006;22:1490–1506.
  • Grobbelaar JU. Physiological and technological considerations for optimizing mass algal cultures. J Appl Phycol. 2000;12:201–206.
  • Weissman JC, Goebel RP, Benemann JR. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng. 1988;31:336–344.
  • Chiaramonti D, Prussi M, Casini D, et al. Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. J Appl Energ. 2013:102:101–111.
  • Mendoza JL, Granados MR, de Godos I, et al. Oxygen transfer and evolution in microalgal culture in open raceways. J Bioresource Technol. 2013;137:188–195.
  • Soeder CJ. Types of algal ponds. In: Grobbelaar JU, Soeder CJ, Toerien DF, editors. Wastewater for aquaculture. Univ. Orange Free State Pub. Ser. C. Bloemfontein, South Africa. 1981;3:131–135.
  • Becker EW. Microalgae: biotechnology and microbiology. Cambridge (MA): Cambridge University Press; 1994.
  • Grobbelaar JU. Mass production of microalgae at optimal photosynthetic rates. In: Dubinsky Z, editor. Photosynthesis. Rijeka (Croatia): In Tech; 2013.
  • Richmond A, Qiang H. Principles for efficient utilization of light for mass production of photoautotrophic microorganisms. Appl Biochem Biotechnol. 1997;63:649–658.
  • Borowitzka M. Culturing microalgae in outdoor ponds, journal of algal culturing techniques. Vol. 218. Burlington (MA): Elsevier/Academic Press; 2005.
  • Oswald WJ. Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, editors. Microalgal biotechnology. New York (NY): Cambridge University Press; 1988: p. 305–328.
  • Brune DE, Schwartz G, Eversole AG, et al. Intensification of pond aquaculture and high rate photosynthetic systems. J Aquacult Eng. 2003;28:65–86.
  • Hadiyanto H, Elmore S, Van Gerven T, et al. Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J. 2013;217:231–239.
  • Liffman K, Paterson DA, Liovic P, et al. Pratish, comparing the energy efficiency of different high rate algal raceway pond designs using computational fluid dynamics. J Chem Eng Res Design. 2013;91:221–226.
  • Zhang Q, Xue S, Yan C, et al. Installation of flow deflectors and wing baffles to reduce dead zone and enhance flashing light effect in an open raceway pond. J Bioresource Technol. 2015;198:150–156.
  • Sompech K, Chisti Y, Srinophakun T. Design of raceway ponds for producing microalgae. J Biofuels. 2012;3:387–397.
  • Agunwamba JC. Field pond performance and design evaluation using physical models. Water Res. 1992;26:1403–1407.
  • Mangelson KA, Watters GZ. The treatment efficiency of waste stabilization ponds. J Sanitary Eng Div Am Soc Civil Eng. 1972:98:407–425.
  • JI, Oragui TP, Curtis SA, Silva, et al. D, Mara The removal of secreted bacteria and viruses in deep waste stabilization ponds in North-East Brazil. J Water Sci Technol. 1987;19:569–573.
  • Pandey R, Premalatha M. Design and analysis of flow velocity distribution inside a raceway pond using computational fluid dynamics. Bioprocess Biosyst Eng. 2017;40:439–450.
  • Dodd JC. Elements of pond design and construction: handbook of microalgal mass culture by Amos Richmond. Boca Raton (FL): CRC Press Inc.; 1986.
  • Contreras A, García F, Molina E, et al. Interaction between CO2‐mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng. 1998;60:317–325.
  • Camacho FG, Rodríguez JJG, Mirón AS, et al. Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks: implications in bioprocess engineering. J Proc Biochem. 2007;42:1506–1515.
  • Jobses L, Martens D, Tramper J. Lethal events during gas sparging in animal cell culture. J Biotechnol Bioeng. 1991;43:115–121.
  • Singha NB, Deb UK, Shahriar Ketheesan M, et al. Investigation of flow dynamics for microalgae suspension in an open pond system. Am J Computat Math. 2017;7:195–207.
  • Ketheesan B, Nirmalakhandan N. Development of a new airlift-driven raceway reactor for algal cultivation. J Appl Energy. 2011;88:3370–3376.
  • Huang J, Qu X, Wan M, et al. Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments. J Algal Res. 2015;10:64–71.
  • Li Y, Zhang Q, Wang Z, et al. Evaluation of power consumption of paddle wheel in an open raceway pond. Bioprocess Biosyst Eng. 2014;37:1325–1336.
  • Jonker J, Faaij A. Techno-economic assessment of microalgae as feedstock for renewable bio-energy production. J Appl Energy. 2013;102:461–475.
  • Labatut RA, Ebeling JM, Bhaskaran R, et al. Hydrodynamics of a large-scale mixed-cell raceway (MCR): experimental studies. J Aquacult Eng. 2007;37:132–143.
  • Das D. Algal biorefinery: an integrated approach. Cham (Switzerland): Springer International Publishing; 2015.
  • Stewart C, Hessami M-K. A study of methods of carbon dioxide capture and sequestration—the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag. 2005;46:403–420.
  • Chisti Y. Airlift bioreactors. New York (NY): Elsevier Science Publishers Ltd; 1989.
  • Burley R, Klapsis A. Flow distribution studies in fish rearing tanks: part 2, analysis of hydraulic performance of 1 m square tanks. J Aquacult Eng. 1985;4:113–134.
  • Watten BJ, Beck LT. Comparative hydraulics of a rectangular cross-flow rearing unit. J Aquacult Eng. 1987;6:127–140.
  • Rasmussen MR, McLean E. Comparison of two different methods for evaluating the hydrodynamic performance of an industrial-scale fish-rearing unit. J Aquacult. 2004;242:397–416.
  • Lunger A, Rasmussen MR, Laursen J, et al. Fish stocking density impacts tank hydrodynamics. J Aquacult. 2006;254:370–375.
  • Levenspiel O. Chemical reaction engineering. New York (NY): Wiley & Sons; 1999.
  • Yanez F. Lagunas de estabilización: teoría, diseño, evaluación y mantenimiento. Cuenca (Ecuador): ETAPA; 1993.
  • Alvarado A, Vedantam S, Goethals P, et al. A compartmental model to describe hydraulics in a full-scale waste stabilization pond. J Water Res. 2012;46:521–530.
  • Valero MAC, Mara D. The influence of algal biomass on tracer experiments in maturation ponds. J Desalination Water Treatment. 2009;4: 89–92.
  • Jerez CG, Navarro E, Malpartida I, et al. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system. Aquat Biol. 2014;22:111–122.
  • Said N, Zouhir F, Ouazzani N, et al. Comparison of two agitation systems air lift and paddle wheel in high rate algal channel. J Water Sci. 2012;25:287–299.
  • El Ouarghi H, Boumansour BE, Dufayt O, et al. Hydrodynamics and oxygen balance in a high rate algal pond. J Water Sci Technol. 2000;42:349–356.
  • El Ouarghi H, Praet E, Jupsin H, et al. Comparison of oxygen and carbon dioxide balances in HRAP high-rate algal ponds. Water Sci Technol. 2003;48:277–281.
  • Nameche TH, Vasel JL. Hydrodynamic studies and modelization for aerated lagoons and waste stabilization ponds. J Water Res. 1998;32:3039–3045.
  • Murphy KL, Wilson AW. Characterization of mixing in aerated lagoons. J Environ Eng Div. 1974;100:1105–1117.
  • Ferrara RA, Harleman DRF. Hydraulic modeling for waste stabilization ponds. J Environ Eng Div. 1981;107817–107830.
  • Polprasert C, Bhattarai KK. Dispersion model for waste stabilization ponds. J Environment Eng. 1985;111:45–59.
  • Benemann JR, Oswald WJ. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass, final report, subcontract XK 4-04136-06, Pittsburgh Energy Technology Center Grant No. DE-FG22-93PC93204; 1996.
  • Darzins A, Pienkos PT, Edye L. Current status and potential for algal biofuels production. Report for IEA Bioenergy Task 39; 2010.
  • Prussi M, Buffi M, Casini D, et al. Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenergy. 2014;67:390–400.
  • Cheng J, Yang Z, Ye Q, et al. Enhanced flashing light effect with up-down chute baffles to improve microalgal growth in a raceway pond. Bioresource Technol. 2015;190:29–35.
  • Nikolaou A, Booth P, Gordon F, et al. Multi-physics modelling of light-limited microalgae growth in raceway ponds. IFAC – Papers on Line. 2016;49:324–329.
  • Amini H, Hashemisohi A, Wang L, et al. Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths. Chem Eng Sci. 2016;156:11–23.
  • Rathbun BE, Schultz S. Preliminary experiments with a modified tracer technique for measuring stream reaction coefficients. US Geological Survey Professional Open File Report; 1975.
  • Kilpatrick FA, Rathbun RE, Yotsukura N, et al. Determination of stream reaeration coefficients by use of tracers. U.S. Geological Survey. Techniques of Water-Resources Investigations of the United States Geological Survey; 1989.
  • Boumansour BE, Jupsin H, Vasel JL. Propane as a tracer gas for reaeration tests. In: Jahne HB, Monahan EC, editors. Third symposium on air water gas transfer; Heidelberg, Germany: IAWQ; 1995. p. 393–404.
  • Putt R, Singh M, Chinnasamy S, et al. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol. 2011;102:3240–3245.
  • Marecos do Monte MHF, Mara DD. The hydraulic performance of waste stabilization ponds in Portugal. In: International conference on waste stabilization ponds; Lisbon, Portugal; 1987. p. 39–47.
  • Arceivala SJ. Hydraulic modeling for waste stabilization ponds discussion. J Environment Eng. 1983;109:265–268.
  • Barceló-Villalobos M, Guzmán Sánchez JL, Martín Cara I, et al. Analysis of mass transfer capacity in raceway reactor. Algal Res. 2018;35:91–97.
  • Weissman JC, Goebel RP. Design and analysis of microalgal open pond systems for the purpose of producing fuels: a subcontract report. Golden (CO): Solar Energy Research Institute; 1987.
  • Chisti Y. Large-scale production of algal biomass: raceway pond, algae biotechnology products and processes. New York (NY): Springer; 2016.
  • Zeng F, Huang J, Meng C, et al. Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments. Bioprocess Biosyst Eng. 2016;39:169–180.
  • Mihalyfalvy E, Johnston HT, Garrett MR, et al. Improved mixing of high rate algal ponds. J Water Res. 1998;32:1334–1337.
  • Sawan SS, Khadamkar HP, Mathpati CS, et al. Computational and experimental studies of high depth algal raceway pond photo-bioreactor. Renew Energy. 2018;118:152–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.