1,645
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions

&
Pages 508-523 | Received 20 Apr 2018, Accepted 22 Dec 2018, Published online: 02 Apr 2019

References

  • Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 2006;57:303–333.
  • Wittstock U, Kurzbach E, Herfurth AM. Glucosinolate breakdown. Adv Bot Res. 2016;80:125–169.
  • del Carmen Martinez-Ballesta M, Carvajal M. Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality. Phytochem Rev. 2015;14:1045–1051.
  • Radojcic Redovnikovic I, Glivetic T, Delonga K. Glucosinolates and their potential role in plant. Period Biol. 2008;110:297–309.
  • Hopkins RJ, van Dam NM, van Loon JJ. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol. 2009;54:57–83.
  • Vassao DG, Wielsch N, Gomes AM, et al. Plant defensive β‐glucosidases resist digestion and sustain activity in the gut of a lepidopteran herbivore. Front Plant Sci. 2018;9:1389.
  • Ahuja I, De Vos RC, Rohloff J, et al. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Sci Rep. 2016;6:38990.
  • Traka M, Mithen R. Glucosinolates, isothiocyanates and human health. Phytochem Rev. 2009;8:269–282.
  • Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18:337–347.
  • Kopriva S, editor. Advances in botanical research. Amsterdam: Academic Press; 2016. (Glucosinolates; 80).
  • Zhou C, Tokuhisa JG, Bevan DR, et al. Properties of β-thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana. Plant Sci. 2012;191:82–92.
  • Andersson D, Chakrabarty R, Bejai S, et al. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Phytochemistry. 2009;70:1345–1354.
  • Li X, Kushad MM. Purification and characterization of myrosinase from horseradish (Armoracia rusticana) roots. Plant Physiol Biochem. 2005;43:503–511.
  • Sandberg M, Holly OM. Note on myrosin. J Biol Chem. 1932;96:443–447.
  • Tsuruo I, Hata T. Studies on myrosinase in mustard seed. Agric Biol Chem. 1968;32:1425–1431.
  • James DC, Rossiter JT. Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol Plant. 1991;82:163–170.
  • Kozlowska HJ, Nowak H, Nowak J. Characterisation of myrosinase in polish varieties of rapeseed. J Sci Food Agric. 1983;34:1171–1178.
  • Bones A, Slupphaug G. Purification, characterization and partial amino acid sequencing of β-thioglucosidase from Brassica napus L. J Plant Physiol. 1989;134:722–729.
  • Ludikhuyze L, Ooms V, Weemaes C, et al. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica). J Agric Food Chem. 1999;47:1794–1800.
  • Van Eylen D, Oey I, Hendrickx M, et al. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J Agric Food Chem. 2007;55:2163–2170.
  • Mahn A, Angulo A, Cabañas F. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). J Agric Food Chem. 2014;62:11666–11671.
  • Natarajan S, Thamilarasan S, Park JI, et al. Molecular modeling of myrosinase from Brassica oleracea: a structural investigation of sinigrin interaction. Genes. 2015;6:1315–1329.
  • Roman J, Castillo A, Cottet L, et al. Kinetic and structural study of broccoli myrosinase and its interaction with different glucosinolates. Food Chem. 2018;254:87–94.
  • Bor M, Ozkur O, Ozdemir F, et al. Identification and characterization of the glucosinolate–myrosinase system in caper (Capparis ovata Desf.). Plant Mol Biol Rep. 2009;27:518–525.
  • Wang M, Li D, Sun X, et al. Characterization of a root-specific β-thioglucosideglucohydrolase gene in Carica papaya and its recombinant protein expressed in Pichia pastoris. Plant Sci. 2009;177:716–723.
  • Nong H, Zhang JM, Li DQ, et al. Characterization of a novel β-thioglucosidase CpTGG1 in Carica papaya and its substrate-dependent and ascorbic acid-independent O-β-glucosidase activity. J Integr Plant Biol. 2010;52:879–890.
  • Finiguerra MG, Iori R, Palmieri S. Soluble and total myrosinase activity in defatted Crambe abyssinica meal. J Agric Food Chem. 2001;49:840–845.
  • Bernardi R, Finiguerra MG, Rossi AA, et al. Isolation and biochemical characterization of a basic myrosinase from ripe Crambe abyssinica seeds, highly specific for epi-progoitrin. J Agric Food Chem. 2003;51:2737–2744.
  • Gil V, MacLeod AJ. Effects of a Lepidium sativum enzyme preparation on the degradation of glucosinolates. Phytochemistry. 1980;19:2071–2076.
  • Durham PL, Poulton JE. Enzymic properties of purified myrosinase from Lepidium sativum seedlings. Z Naturforsch C. 1990;45:173–178.
  • Bhat R, Kaur T, Khajuria M, et al. Purification and characterization of a novel redox-regulated isoform of myrosinase (β-thioglucoside glucohydrolase) from Lepidium latifolium L. J Agric Food Chem. 2015;63:10218–10226.
  • Jwanny EW, El-Sayed ST, Rashad MM, et al. Myrosinase from roots of Raphanus sativus. Phytochemistry. 1995;39:1301–1303.
  • Shikita M, Fahey JW, Golden TR, et al. An unusual case of “uncompetitive activation” by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochem J. 1999;341:725–732.
  • Hara M, Fujii Y, Sasada Y, et al. cDNA cloning of radish (Raphanus sativus) myrosinase and tissue-specific expression in root. Plant Cell Physiol. 2000;41:1102–1109.
  • Pihakaski K, Pihakaski S. Myrosinase in Brassicaceae (Cruciferae) II. Myrosinase activity in different organs. J Exp Bot. 1978;29:335–345.
  • Pessina A, Thomas RM, Palmieri S, et al. An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys. 1990;280:383–389.
  • Iori R, Rollin P, Streicher H, et al. The myrosinase-glucosinolate interaction mechanism studied using some synthetic competitive inhibitors. FEBS Lett. 1996;385:87–90.
  • Burmeister WP, Cottaz S, Driguez H, et al. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl–enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997;5:663–676.
  • Burmeister WP, Cottaz S, Rollin P, et al. High resolution X-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J Biol Chem. 2000;275:39385–39393.
  • Van Eylen D, Hendrickx M, Van Loey A. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem. 2006;97:263–271.
  • Pang Q, Chen S, Li L, et al. Characterization of glucosinolate-myrosinase system in developing salt cress Thellungiella halophila. Physiol Plant. 2009;136:1–9.
  • Pang Q, Guo J, Chen S, et al. Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil. 2012;355:363–374.
  • Ohtsuru M, Kawatani H. Studies on the myrosinase from Wasabia japonica: purification and some properties of wasabi myrosinase. Agric Biol Chem. 1979;43:2249–2255.
  • MacGibbon DB, Allison RM. A glucosinolase system in the cabbage aphid Brevicoryne brassicae. New Zeal J Sci. 1968;11:440–446.
  • MacGibbon DB, Beuzenberg EJ. Location of glucosinolase in Brevicoryne brassicae and Lipaphiserysimi (Aphididae). New Zeal J Sci. 1978;21:389–392.
  • Pontoppidan B, Ekbom B, Eriksson S, et al. Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a brassica herbivore. FEBS J. 2001;268:1041–1048.
  • Jones AM, Bridges M, Bones AM, et al. Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol. 2001;31:1–5.
  • Jones AM, Winge P, Bones AM, et al. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol. 2002;32:275–284.
  • Francis F, Lognay G, Wathelet JP, et al. Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch Insect Biochem Physiol. 2002;50:173–182.
  • Husebye H, Arzt S, Burmeister WP, et al. Crystal structure at 1.1 Angstroms resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases. Insect Biochem Mol Biol. 2005;35:1311–1320.
  • Tani N, Othsuru M, Hata T. Isolation of myrosinase producing microorganism. Agric Biol Chem. 1974;38:1617–1622.
  • Llanos Palop M, Smiths JP, Brink BT. Degradation of sinigrin by Lactobacillus agilis strain R16. Int J Food Microbiol. 1995;26:219–229.
  • Meulenbeld G, Hartmans S. Thioglucosidase activity from Sphingobacterium sp. strain OTG1. Appl Microbiol Biotechnol. 2001;56:700.
  • Luang-In V, Narbad A, Nueno-Palop C, et al. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res. 2014;58:875–883.
  • Ohtsuru M, Tsuruo I, Hata T. Studies on fungous myrosinase: part I. Production, purification and some characteristics part II. Effects of various reagents on its enzymatic activities part III. On the β-glucosidase activity of fungous myrosinase and the relationship of fungous and plant myrosinases to β-glucosidases. Agric Biol Chem. 1969;33:1309–1325.
  • Ohtsuru M, Hata T. General characteristics of the intracellular myrosinase from Aspergillus niger. Agric Biol Chem. 1973;37:2543–2548.
  • Ohtsuru M, Tsuruo I, Hata T. The production and stability of intracellular myrosinase from Aspergillus niger. Agric Biol Chem. 1973;37:967–971.
  • Smits JP, Knol W, Bol J. Glucosinolate degradation by Aspergillusclavatus and Fusarium oxysporum in liquid and solid-state fermentation. App Microbiol Biotech. 1993;38:696–701.
  • Sakorn P, Rakariyatham N, Niamsup H, et al. Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture. Sci Asia. 1999;25:189–194.
  • Rakariyatham N, Butr-Indr B, Niamsup H, et al. Improvement of myrosinase activity of Aspergillus sp. NR4617 by chemical mutagenesis. Electron J Biotechnol. 2006;9:379–385.
  • Bussy A. Sur la ormation de l’huileessentielle de moutarde. J Pharm. 1840;27:464–471.
  • Heinricher E. Ueber eiweissstoffe fuhrende idioblasten bei einigen cruciferen. Berdt Bot Ges. 1884;2:463–466.
  • Guignard L. Recherchessur la localisation des principesactifs des crucifères. J Bot Paris. 1890;4:385–394.
  • Gaines RD, Goerin KJ. New evidence for a two enzyme system in myrosinase. Biochem Biophys Res Commun. 1960;2:207–212.
  • Nagashima Z, Uchiyama M. Possibility that myrosinase is a single enzyme and mechanism of decomposition of mustard oil glucoside by myrosinase. J Agric Chem Soc Jpn. 1959;23:555–556.
  • Ettlinger M, Dateo GP, Harrison B, et al. Vitamin C as a coenzyme: the hydrolysis of mustard oil glucosides. Proc Natl Acad Sci USA. 1961;47:1875–1880.
  • Masaru O, Tadao H. Molecular properties of multiple forms of plant myrosinase. Agric Biol Chem. 1972;36:2495–2503.
  • Thangstad OP, Winge P, Husebye H, et al. The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol Biol. 1993;23:511–524.
  • Xue J, Lenma M, Falk A, et al. The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family. Plant Mol Biol. 1992;18:387–398.
  • Bourderioux A, Lefoix M, Gueyrard D, et al. The glucosinolate–myrosinase system. New insights into enzyme–substrate interactions by use of simplified inhibitors. Org Biomol Chem. 2005;3:1872–1879.
  • Textor S, Gershenzon J. Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev. 2009;8:149–170.
  • Zhao Z, Zhang W, Stanley BA, et al. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell. 2008;20:3210–3226.
  • Fu L, Wang M, Han B, et al. Arabidopsis myrosinase genes AtTGG4 and AtTGG5 Are root-tip specific and contribute to auxin biosynthesis and root-growth regulation. Int J Mol Sci. 2016;17:892.
  • Bones AM, Rossiter JT. The myrosinase‐glucosinolate system, its organisation and biochemistry. Physiol Plant. 1996;97:194–208.
  • Li M, Sack FD. Myrosin idioblast cell fate and development are regulated by the arabidopsis transcription factor FAMA, the auxin pathway, and vesicular trafficking. Plant Cell. 2014;26:4053–4066.
  • Shirakawa M, Ueda H, Nagano AJ, et al. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in arabidopsis. Plant Cell. 2014;26:4039–4052.
  • Shirakawa M, Ueda H, Shimada T, et al. Myrosin cells are differentiated directly from ground meristem cells and are developmentally independent of the vasculature in arabidopsis leaves. Plant Signal Behav. 2016;1:e1150403.
  • Sehrawat A, Sougrakpam Y, Deswal R. Cold modulated nuclear S-nitrosoproteome analysis indicates redox modulation of novel Brassicaceae specific, myrosinase and napin in Brassica juncea. Enviorn Exp Bot. 2018. 10.1016/j.envexpbot.2018.10.010.
  • Rodman JE. A taxonomic analysis of glucosinolate-producing plants, part 1: phenetics. Syst Bot. 1991;16:598–618.
  • Rodman JE. A taxonomic analysis of glucosinolate-producing plants, part 2: cladistics. Syst Bot. 1991;16:619–629.
  • Iversen TH, Baggerud C, Beisvaag T. Myrosin cells in Brassicaceae roots. Z Pflanzenphysiol. 1979;94:143–154.
  • Jørgensen LB. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. Nordic J Bot. 1981;1:433–445.
  • Bones A, Iversen TH. Myrosin cells and myrosinase. Israel J Bot. 1985;34:351–376.
  • Thangstad OP, Iversen TH, Slupphaug G, et al. Immunocytochemical localization of myrosinase in Brassica napus L. Planta. 1990;180:245–248.
  • Thangstad OP, Evjen K, Bones A. Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma. 1991;161:85–93.
  • Höglund AS, Lenman M, Falk A, et al. Distribution of myrosinase in rapeseed tissues. Plant Physiol. 1991;95:213–221.
  • Xue J, Pihlgren U, Rask L. Temporal, cell-specific, and tissue-preferential expression of myrosinase genes during embryo and seedling development in Sinapis alba. Planta. 1993;191:95–101.
  • Husebye H, Chadchawan S, Winge P, et al. Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol. 2002;128:1180–1188.
  • Thangstad OP, Gilde B, Chadchawan S, et al. Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol. 2004;54:597–611.
  • Andréasson E, Jørgensen LB, Höglund AS, et al. Different myrosinase and idioblast distribution in arabidopsis and Brassica napus. Plant Physiol. 2001;127:1750–1763.
  • Agee AE, Surpin M, Sohn EJ, et al. MODIFIED VACUOLE PHENOTYPE1 is an arabidopsis myrosinase-associated protein involved in endomembrane protein trafficking. Plant Physiol. 2010;152:120–132.
  • Zhu M, Zhu N, Song WY, et al. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Plant J. 2014;78:491–515.
  • Barth C, Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 2006;46:549–562.
  • Lenman M, Falk A, Rodin J, et al. Differential expression of myrosinase gene families. Plant Physiol. 1993;103:703–711.
  • Naumoff DG. Hierarchical classification of glycoside hydrolases. Biochemistry (Mosc). 2011;76:622–635.
  • Zhang J, Pontoppidan B, Xue J, et al. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiol Plant. 2002;115:25–34.
  • Rask L, Andréasson E, Ekbom B, et al. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol. 2000;42:93–113.
  • Machlin S, Mitchell-Olds T, Bradley D. Sequence of a Brassica campestris myrosinase gene. Plant Physiol. 1993;102:1359–1360.
  • Xue J, Rask L. The unusual 5’ splicing border GC is used in myrosinase genes of the Brassicaceae. Plant Mol Biol. 1995;29:167–171.
  • Xu Z, Escamilla-Treviño L, Zeng L, et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol Biol. 2004;55:343–367.
  • Fu L, Han B, Tan D, et al. Identification and evolution of functional alleles of the previously described pollen specific myrosinase pseudogene AtTGG6 in Arabidopsis thaliana. Int J Mol Sci. 2016;17:262.
  • Kumar R, Kumar S, Sangwan S, et al. Protein modeling and active site binding mode interactions of myrosinase–sinigrin in Brassica juncea—an in silico approach. J Mol Graphics Modell. 2011;29:740–746.
  • Barrett T, Suresh CG, Tolley SP, et al. The crystal structure of a cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995;3:951–960.
  • Román J, Castillo A, Mahn A. Molecular docking of potential inhibitors of broccoli myrosinase. Molecules. 2018;23:1313–1326.
  • Liebminger E, Grass J, Jez J, et al. Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry. 2012;84:24–30.
  • Bednarek P, Pislewska-Bednarek M, Svatos A, et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science. 2009;323:101–106.
  • Nakano RT, Piślewska‐Bednarek M, et al. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant J. 2017;89:204–220.
  • Schlaeppi K, Bodenhausen N, Buchala A, et al. The glutathione-deficient mutant pad2 − 1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 2008;55:774–786.
  • Tookey HL. Crambe thioglucoside glucohydrolase (EC 3.2. 3.1): separation of a protein required for epithiobutane formation. Can J Biochem. 1973;51:1654–1660.
  • Tsuruo I, Hata T. Studies on the myrosinase in mustard seed: part II. On the activation mode of the myrosinase by L-ascorbic acid. Agric Biol Chem. 1967;31:27–32.
  • Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell. 2006;18:2493–2505.
  • Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol Plant. 2015;8:378–388.
  • Dong CH, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA. 2006;103:8281–8286.
  • Miura K, Jin JB, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in arabidopsis. Plant Cell. 2007;19:1403–1414.
  • Ding Y, Li H, Zhang X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in arabidopsis. Dev Cell. 2015;32:278–289.
  • Shirakawa M, Ueda H, Shimada T, et al. Myrosin cell development is regulated by endocytosis machinery and PIN1 polarity in leaf primordia of Arabidopsis thaliana. Plant Cell. 2014;26:4448–4461.
  • Ueda H, Nishiyama C, Shimada T, et al. AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol. 2006;47:164–175.
  • Shirakawa M, Ueda H, Koumoto Y, et al. CONTINUOUS VASCULAR RING (COV1) is a trans-Golgi network-localized membrane protein required for Golgi morphology and vacuolar protein sorting. Plant Cell Physiol. 2014;55:764–772.
  • Chaurasia SP, Deswal R. Identification and in silico analysis of major redox modulated proteins from Brassica juncea seedlings using 2D redox SDS PAGE (2-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein J. 2017;36:64–76.
  • Siemens DH, Mitchell-Olds T. Evolution of pest-induced defenses in brassica plants: tests of theory. Ecology. 1998;79:632–646.
  • Pontoppidan B, Hopkins R, Rask L, et al. Differential wound induction of the myrosinase system in oilseed rape (Brassica napus): contrasting insect damage with mechanical damage. Plant Sci. 2005;168:715–722.
  • Martin N, Muller C. Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol. 2007;8:13–25.
  • Ahuja I, van Dam NM, Winge P, et al. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. J Exp Bot. 2015;66:579–592.
  • Kusnierczyk A, Winge P, Midelfart H, et al. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot. 2007;58:2537–2552.
  • Muller C, Sieling N. Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore–and vice versa. Chemoecology. 2006;16:191–201.
  • Kaur T, Bhat R, Khajuria M, et al. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L. Plant Sci. 2016;250:1–9.
  • Travers-Martin N, Müller C. Specificity of induction responses in Sinapis alba L. and their effects on a specialist herbivore. J Chem Ecol. 2007;33:1582–1597.
  • Andreasson E, Wretblad S, Granér G, et al. The myrosinase‐glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. Mol Plant Pathol. 2001;2:281–286.
  • Yan PA, Xu YY, Zhu XW, et al. Molecular characterization and expression profiles of myrosinase gene (RsMyr2) in radish (Raphanus sativus L.). J Integr Agric. 2014;13:1877–1888.
  • Hasegawa T, Yamada K, Kosemura S, et al. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls. Phytochemistry. 2000;54:275–279.
  • Zeier J, Pink B, Mueller MJ, et al. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta. 2004;219:673–683.
  • Rodríguez-Hernández MD, Moreno DA, Carvajal M, et al. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress. Plant Cell Physiol. 2014;55:2047–2059.
  • Kissen R, Eberl F, Winge P, et al. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry. 2016;130:106–118.
  • Koh J, Chen G, Yoo MJ, et al. Comparative proteomic analysis of Brassica napus in response to drought stress. J Proteome Res.. 2015;14:3068–3081.
  • Brandt S, Fachinger S, Tohge T, et al. Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves. PLoS One. 2018;13:e0202153.
  • Cocetta G, Mishra S, Raffaelli A, et al. Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket. J Plant Physiol. 2018;231:261–270.
  • Cartea ME, Velasco P. Glucosinolates in brassica foods: bioavailability in food and significance for human health. Phytochem Rev. 2008;7:213–229.
  • Verkerk R, Schreiner M, Krumbein A, et al. Glucosinolates in brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res. 2009;53:S219.
  • Atwell LL, Hsu A, Wong CP, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res. 2015;59:424–433.
  • Cramer JM, Jeffery EH. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer. 2011;63:196–201.
  • Giacoppo S, Galuppo M, Iori R, et al. Protective role of (RS)-glucoraphanin bioactivated with myrosinase in an experimental model of multiple sclerosis. CNS Neurosci Ther. 2013;19:577–584.
  • Giacoppo S, Galuppo M, De Nicola GR, et al. Tuscan black kale sprout extract bioactivated with myrosinase: a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat. BMC Complem Altern M. 2015;15:397–412.
  • Galuppo M, Giacoppo S, De Nicola GR, et al. RS-Glucoraphanin bioactivated with myrosinase treatment counteracts proinflammatory cascade and apoptosis associated to spinal cord injury in an experimental mouse model. J Neurol Sci. 2013;334:88–96.
  • Egner PA, Chen JG, Wang JB, et al. Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res. 2011;4:384–395.
  • Wagner AE, Sturm C, Piegholdt S, et al. Myrosinase-treated glucoerucin is a potent inducer of the Nrf2 target gene heme oxygenase 1-studies in cultured HT-29 cells and mice. J Nutr Biochem. 2015;26:661.
  • Cutolo G, Reise F, Schuler M, et al. Bifunctional mannoside–glucosinolate glycoconjugates as enzymatically triggered isothiocyanates and FimH ligands. Org Biomol Chem. 2018;16:4900–4913.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.