1,896
Views
59
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in small RNA mediated plant-virus interactions

, , , &
Pages 587-601 | Received 17 May 2018, Accepted 10 Feb 2019, Published online: 04 Apr 2019

References

  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–329.
  • Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009;60:485–510.
  • Zhang C, Wu Z, Li Y, et al. Biogenesis, function, and applications of virus-derived small RNAs in plants. Front Microbiol. 2015;6:1237.
  • Bengyella L, Waikhom SD, Allie F, et al. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. Plant Mol Biol. 2015;89:243–252.
  • Pumplin N, Voinnet O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol. 2013;11:745–760.
  • Weiberg A, Wang M, Bellinger M, et al. Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol. 2014;52:495–516.
  • Borges F, Martienssen RA. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol. 2015;16:727–741.
  • Kim YJ, Zheng B, Yu Y, et al. The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 2011;30:814–822.
  • Hajheidari M, Farrona S, Huettel B, et al. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA Polymerase II. Plant Cell. 2012;24:1626–1642.
  • Achkar NP, Cambiagno DA, Manavella PA. miRNA biogenesis: a dynamic pathway. Trends Plant Sci. 2016;21:1034–1044.
  • Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol. 2014;65:473–503.
  • Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38:465–475.
  • Suarez IP, Burdisso P, Benoit M, et al. Induced folding in RNA recognition by Arabidopsis thaliana DCL1. Nucleic Acids Res. 2015;43:6607–6619.
  • Dong Z, Han M-H, Fedoroff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA. 2008;105:9970–9975.
  • Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–159.
  • Wang X-J, Gaasterland T, Chua N-H. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 2005;6:R30.
  • Li Y-Y, Qin L, Guo Z-M, et al. In silico discovery of human natural antisense transcripts. BMC Bioinformatics. 2006;7:18.
  • Yuan C, Wang J, Harrison AP, et al. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana. DNA Res. 2015;22:233–243.
  • Gasciolli V, Mallory AC, Bartel DP, et al. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol. 2005;15:1494–1500.
  • Allen E, Xie Z, Gustafson AM, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121:207–221.
  • Qi Y, He X, Wang XJ, et al. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006;443:1008–1012.
  • Blevins T, Podicheti R, Mishra V, et al. Identification of pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. Elife. 2015;4:e09591.
  • Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15:394–408.
  • Wang F, Axtell MJ. AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V-dependent loci in Arabidopsis thaliana. Plant J. 2017;90:37–47.
  • Liu W, Duttke SH, Hetzel J, et al. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase v transcripts in Arabidopsis. Nat Plants. 2018;4:181–188.
  • Yu B, Bi L, Zhai J, et al. siRNAs compete with miRNAs for methylation by HEN1 in Arabidopsis. Nucleic Acids Res. 2010;38:5844–5850.
  • Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol. 2005;15:1501–1507.
  • Ramachandran V, Chen X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science. 2008;321:1490–1492.
  • Katoh T, Sakaguchi Y, Miyauchi K, et al. Selective stabilization of mammalian microRNAs by 3’ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 2009;23:433–438.
  • Guidotti LG, Iannacone M. Editorial overview: viral pathogenesis. Curr Opin Virol. 2015;11:v–vii.
  • Mandadi KK, Scholthof K-B. Plant immune responses against viruses: how does a virus cause disease? Plant Cell. 2013;25:1489–1505.
  • Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol. 2007;45:221–243.
  • Liu J, Zhang XJ, Zhang FP, et al. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genom. 2015;16:945.
  • Liu JY, Fan HY, Wang Y, et al. Characterization of microRNAs of beta macrocarpa and their responses to beet necrotic yellow vein virus infection. PLoS One. 2017;12:e0186500.
  • Wang X-B, Jovel J, Udomporn P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell. 2011;23:1625–1638.
  • Shweta Akhter Y, Khan JA. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against cotton leaf curl Burewala virus. Gene. 2018;638:60–65.
  • Wang J, Tang Y, Yang Y, et al. Cotton leaf curl Multan virus-derived viral small RNAs can target cotton genes to promote viral infection. Front Plant Sci. 2016;7:1162.
  • Li J, Zheng H, Zhang C, et al. Different virus-derived siRNAs profiles between leaves and fruits in cucumber green mottle mosaic virus-infected Lagenaria siceraria plants. Front Microbiol. 2016;7:1797.
  • Guo Z, Lu J, Wang X, et al. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis. Proc Natl Acad Sci USA. 2017;114:1377–1382.
  • Du Z, Chen A, Chen W, et al. Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain of cucumber mosaic virus. Plant Physiol. 2014;164:1378–1388.
  • Cao M, Du P, Wang X, et al. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci USA. 2014;111:14613–14618.
  • Smith NA, Eamens AL, Wang MB. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog. 2011;7:e1002022.
  • Kundu A, Paul S, Dey A, et al. High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean yellow mosaic India virus inoculation highlighting stress regulation. Plant Sci. 2017;257:96–105.
  • Guo Y, Jia MA, Yang Y, et al. Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provids insight into tobacco-PVY interactions. Sci Rep. 2017;7:4895.
  • Li M, Li Y, Xia Z, et al. Characterization of small interfering RNAs derived from Rice black streaked dwarf virus in infected maize plants by deep sequencing. Virus Res. 2017;228:66–74.
  • Tong A, Yuan Q, Wang S, et al. Altered accumulation of osa-miR171b contributes to Rice Stripe Virus infection by regulating disease symptoms. J Exp Bot. 2017;68:4357–4367.
  • Wu J, Yang R, Yang Z, et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants. 2017;3:16203.
  • Wang H, Jiao X, Kong X, et al. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol. 2016;170:2365–2377.
  • Xia Z, Zhao Z, Li M, et al. Identification of miRNAs and their targets in maize in response to Sugarcane mosaic virus infection. Plant Physiol Biochem. 2018;125:143–152.
  • Deng Y, Wang J, Tung J, et al. A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog. 2018;14:e1006756.
  • Ma X, Nicole MC, Meteignier LV, et al. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. J Exp Bot. 2015;66:919–932.
  • Ghoshal B, Sanfaçon H. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology. 2014;456–457:188–197.
  • Ramesh SV, Williams S, Kappagantu M, et al. Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res. 2017;238:13–23.
  • Shivaprasad PV, Chen H-M, Patel K, et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell. 2012;24:859–874.
  • Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol. 2016;17:11–18.
  • Jackson AO, Li Z. Developments in plant negative-strand RNA virus reverse genetics. Annu Rev Phytopathol. 2016;54:469–498.
  • Shimura H, Pantaleo V. Viral induction and suppression of RNA silencing in plants. Biochim Biophys Acta. 2011;1809:601–612.
  • Zhang C, Wu Z, Li Y, et al. Biogenesis, function, and applications of virus-derived small RNAs in plants. Front Microbiol. 2015;6:1237.
  • Fukudome A, Kanaya A, Egami M, et al. Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis dicer-like 4. RNA. 2011;17:750–760.
  • Blevins T, Rajeswaran R, Shivaprasad PV, et al. Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006;34:6233–6246.
  • Garcia-Ruiz H, Takeda A, Chapman EJ, et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell. 2010;22:481–496.
  • Raja P, Jackel JN, Li S, et al. Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against Geminiviruses. J Virol. 2014;88:2611–2622.
  • Parent JS, Bouteiller N, Elmayan T, et al. Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant J. 2015;81:223–232.
  • Morel J, Godon C, Mourrain P, et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell. 2002;14:629–639.
  • Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci. 2008;105:14732–14737.
  • Dzianott A, Sztuba-Solińska J, Bujarski JJ. Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles. MPMI. 2012;25:97–106.
  • Garcia-Ruiz H, Carbonell A, Hoyer JS, et al. Roles and programming of Arabidopsis ARGONAUTE proteins during turnip mosaic virus infection. PLoS Pathog. 2015;11:e1004755.
  • Raja P, Sanville BC, Buchmann RC, et al. Viral genome methylation as an epigenetic defense against Geminiviruses. J Virol. 2008;82:8997–9007.
  • Harvey JJW, Lewsey MG, Patel K, et al. An antiviral defense role of AGO2 in plants. PLoS One. 2011;6:e14639.
  • Zhang X, Zhang X, Singh J, et al. Temperature-dependent survival of turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J Virol. 2012;86:6847–6854.
  • Wang X-B, Wu Q, Ito T, et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2010;107:484–489.
  • Sahu PP, Sharma N, Puranik S, et al. Post-transcriptional and epigenetic arms of RNA silencing: a defense machinery of naturally tolerant tomato plant against tomato leaf curl new delhi virus. Plant Mol Biol Rep. 2014;32:1015–1029.
  • Butterbach P, Verlaan MG, Dullemans A, et al. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci. 2014;111:12942–12947.
  • Li F, Pignatta D, Bendix C, et al. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA. 2012;109:1790–1795.
  • Naqvi AR, Haq QM, Mukherjee SK. MicroRNA profiling of tomato leaf curl New Delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J. 2010;7:281.
  • Várallyay É, Válóczi A, Ágyi Á, et al. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 2010;29:3507–3519.
  • Chen L, Luan Y, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep. 2015;34:2013–2025.
  • Singh A, Taneja J, Dasgupta I, et al. Development of plants resistant to tomato Geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol. 2015;16:724–734.
  • Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res. 2016;212:1–11.
  • Wang J, Yu W, Yang Y, et al. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep. 2015;5:16946.
  • Gao R, Liu P, Irwanto N, et al. Upregulation of LINC - AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana. Plant Cell Rep. 2016;35:2257–2267.
  • Wang J, Yang Y, Jin L, et al. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection. BMC Plant Biol. 2018;18:104.
  • Gupta AK, Hein GL, Graybosch RA, et al. Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology. 2018;518:152–162.
  • Robles Luna G, Reyes CA, Peña EJ, et al. Identification and characterization of two RNA silencing suppressors encoded by Ophioviruses. Virus Res. 2017;235:96–105.
  • Iki T, Tschopp M, Voinnet O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA. 2017;23:639–654.
  • Mingot A, Valli A, Rodamilans B, et al. The P1N-PISPO trans -frame gene of sweet potato feathery mottle potyvirus is produced during virus infection and functions as an RNA silencing suppressor. J Virol. 2016;90:3543–3557.
  • Kubota K, Ng J. Lettuce chlorosis virus P23 suppresses RNA silencing and induces local necrosis with increased severity at raised temperatures. Phytopathology. 2016;106:653–662.
  • Kumar V, Mishra SK, Rahman J, et al. Mungbean yellow mosaic Indian virus encoded AC2 protein suppresses RNA silencing by inhibiting Arabidopsis RDR6 and AGO1 activities. Virology. 2015;486:158–172.
  • Nguyen TD, Lacombe S, Bangratz M, et al. p2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway. Virus Genes. 2015;51:267–275.
  • Deng XG, Peng XJ, Zhu F, et al. A critical domain of sweet potato chlorotic fleck virus nucleotide-binding protein (NaBp) for RNA silencing suppression, nuclear localization and viral pathogenesis. Mol Plant Pathol. 2015;16:365–375.
  • Kong L, Wang Y, Yang X, et al. Broad bean wilt virus 2 encoded VP53, VP37 and large capsid protein orchestrate suppression of RNA silencing in plant. Virus Res. 2014;192:62–73.
  • Lukhovitskaya NI, Vetukuri RR, Sama I, et al. A viral transcription factor exhibits antiviral RNA silencing suppression activity independent of its nuclear localization. J Gen Virol. 2014;95:2831–2837.
  • Zhai Y, Bag S, Mitter N, et al. Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Arch Virol. 2014;159:1499–1504.
  • Laird J, McInally C, Carr C, et al. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol. 2013;94:2777–2789.
  • Szabo EZ, Manczinger M, Goblos A, et al. Switching on RNA silencing suppressor activity by restoring argonaute binding to a viral protein. J Virol. 2012;86:8324–8327.
  • Gonzalez I, Rakitina D, Semashko M, et al. RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. RNA. 2012;18:771–782.
  • Fusaro AF, Correa RL, Nakasugi K, et al. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology. 2012;426:178–187.
  • Shen WJ, Ruan XL, Li XS, et al. RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol. 2012;157:1531–1539.
  • Gouveia P, Dandlen S, Costa Â, et al. Identification of an RNA silencing suppressor encoded by Grapevine leafroll-associated virus 3. Eur J Plant Pathol. 2012;133:237–245.
  • Zhang Z, Chen H, Huang X, et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell. 2011;23:273–288.
  • Du Z, Xiao D, Wu J, et al. p2 of Rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol Plant Pathol. 2011;12:808–814.
  • Shen M, Xu Y, Jia R, et al. Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3. J Mol Biol. 2010;404:665–679.
  • Buchmann RC, Asad S, Wolf JN, et al. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol. 2009;83:5005–5013.
  • Vogler H, Akbergenov R, Shivaprasad PV, et al. Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Virol. 2007;81:10379–10388.
  • Jin Y, Ma D, Dong J, et al. HC-pro protein of potato virus Y can interact with three Arabidopsis 20S proteasome subunits in Planta. J Virol. 2007;81:12881–12888.
  • Wieczorek P, Obrępalska-Stęplowska A. Suppress to survive—implication of plant viruses in PTGS. Plant Mol Biol Rep. 2015;33:335–346.
  • Merai Z, Kerenyi Z, Kertesz S, et al. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol. 2006;80:5747–5756.
  • Csorba T, Kontra L, Burgyán J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology. 2015;479–480:85–103.
  • Varallyay E, Havelda Z. Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol Plant Pathol. 2013;14:567–575.
  • Kenesi E, Carbonell A, Lózsa R, et al. A viral suppressor of RNA silencing inhibits ARGONAUTE 1 function by precluding target RNA binding to pre-assembled RISC. Nucleic Acids Res. 2017;45:7736–7750.
  • Wang L-Y, Lin S-S, Hung T-H, et al. Multiple domains of the Tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. Mol Plant Microbe Interact. 2012;25:648–657.
  • Sáenz P, Salvador B, Simón-Mateo C, et al. Host-specific involvement of the HC protein in the long-distance movement of potyviruses. J Virol. 2002;76:1922–1931.
  • Valli A, Oliveros JC, Molnar A, et al. The specific binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of Cucumber vein yellowing virus P1b and perturbs endogenous small RNA populations. RNA. 2011;17:1148–1158.
  • Giner A, Lakatos L, García-Chapa M, et al. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog. 2010;6:e1000996.
  • Nie X, Molen TA. Host recovery and reduced virus level in the upper leaves after Potato virus Y infection occur in tobacco and tomato but not in potato plants. Viruses. 2015;7:680–698.
  • Niehl A, Wyrsch I, Boller T, et al. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol. 2016;211:1008–1019.
  • Lukan T, Baebler S, Pompe-Novak M, et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front Plant Sci. 2018;9:168.
  • Niu QW, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol. 2006;24:1420–1428.
  • Kung YJ, Lin SS, Huang YL, et al. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol. Plant Pathol. 2012;13:303–317.
  • Chen L, Cheng X, Cai J, et al. Multiple virus resistance using artificial trans-acting siRNAs. J Virol Methods. 2016;228:16–20.
  • Liu L, Gu Q, Ijaz R, et al. Generation of transgenic watermelon resistance to Cucumber mosaic virus facilitated by an effective Agrobacterium-mediated transformation method. Sci Hortic. 2016;205:32–38.
  • Kis A, Tholt G, Ivanics M, et al. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol. 2016;17:427–437.
  • Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants. J Virol. 2007;81:6690–6699.
  • Zhao M, León DS, Mesel F, et al. Assorted processing of synthetic trans-acting siRNAs and its activity in antiviral resistance. PLoS One. 2015;10:e0132281.
  • Mitter N, Zhai Y, Bai AX, et al. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Res. 2016;211:151–158.
  • Petchthai U, Yee CSL, Wong S-M. Resistance to CymMV and ORSV in artificial microRNA transgenic Nicotiana benthamiana plants. Sci Rep. 2018;8:9958.
  • Sun L, Lin C, Du J, et al. Dimeric artificial microRNAs mediate high resistance to RSV and RBSDV in transgenic rice plants. Plant Cell Tiss Organ Cult. 2016;126:127–139.
  • Zhang X, Li H, Zhang J, et al. Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res. 2011;20:569–581.
  • Vu TV, Roy Choudhury N, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. 2013;172:35–45.
  • Fahim M, Millar AA, Wood CC, et al. Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J. 2012;10:150–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.