2,396
Views
79
CrossRef citations to date
0
Altmetric
Review Articles

Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health

, , & ORCID Icon
Pages 981-998 | Received 18 Mar 2019, Accepted 24 Jul 2019, Published online: 27 Aug 2019

References

  • FAO: Food and Agriculture Organization of the United Nations [Internet]. Rome (Italy): FAO. How to feed the World in 2050;2009 [cited 2019 Feb 25]; Available from www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf.
  • Prasanna R, Sharma E, Sharma P, et al. Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy Water Environ. 2013;11:175–183.
  • Chaudhary V, Prasanna R, Nain L, et al. Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World J Microbiol Biotechnol. 2012;28:3301–3310.
  • FAO. World fertilizer trends and outlook to 2018. Rome (Italy): FAO; 2015. p. 66.
  • Rashid MI, Mujawar LH, Shahzad T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.
  • Pankhurst CE, Lynch JM, The role of soil microbiology in sustainable intensive agriculture. In: Andrews JH, Tommerup IC, editors. Advances in Plant Pathology, Vol. 11. Waltham, MA: Academic Press; 1995. p. 229–247.
  • Chen MM, Zhu YG, Su YH, et al. Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol. 2007;43:31–38.
  • Singh JS, Pandey VC, Singh DP. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ. 2011;140:339–353.
  • Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;13:5970–5975.
  • Manjunath M, Kanchan A, Ranjan K, et al. Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon. 2016;2:e00066.
  • Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 2016;34:1225–1244.
  • Megharaj M, Kantachote D, Singleton I, et al. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut. 2000;109:35–42.
  • Singh DP, Prabha R, Yandigeri MS, et al. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Anton Van Leeuwen. 2011;100:557–568.
  • Renuka N, Guldhe A, Prasanna R, et al. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv. 2018;36:1255–1273.
  • Feng S, Fu Q. Expansion of global drylands under a warming climate. Atmos Chem Phys. 2013;13:10081–10094.
  • Luo Y, Su B, Currie WS, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience. 2004;54:731–739.
  • Šibanc N, Dumbrell AJ, Mandić-Mulec I, et al. Impacts of naturally elevated soil CO2 concentrations on communities of soil archaea and bacteria. Soil Biol Biochem. 2014;68:348–356.
  • Reub M. Notice sur la nouvelle flora de Krakatau. Ann J Ard Bot Buitenzorg. 1988;7:221–223.
  • Bhargava P, Kumar Srivastava A, Urmil S, et al. Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol. 2005;162:1220–1225.
  • Holzinger A, Lütz C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron. 2006;37:190–207.
  • Treves H, Raanan H, Finkel OM, et al. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol. 2013;86:373–380.
  • Garcia-Pichel F, López-Cortés A, Nübel U. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol. 2001;67:1902–1910.
  • Lynch JM, Bragg E. Microorganisms and soil aggregate stability. In: Stewart BA, editor. Advances in soil science. New York, NY: Springer; 1985. p. 133–171.
  • Lange OL. Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer; 2003. pp. 217–240.
  • Lichner L, Hallett PD, Drongová Z, et al. Algae influence the hydrophysical parameters of a sandy soil. Catena. 2013;108:58–68.
  • Hu C, Liu Y, Song L, et al. Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol. 2002;14:281–292.
  • Flaibani A, Olsen Y, Painter TJ. Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carb Res. 1989;190:235–248.
  • Bhatnagar A, Makandar MB, Garg MK, et al. Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ. 2008;72:73–83.
  • Zhang B, Zhang Y, Downing A, et al. Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut desert. China. Arid Land Res Manage. 2011;25:275–293.
  • Hu CX, Liu YD. Primary succession of algal community structure in desert soil. Acta Bot Sin. 2003;45:917–924.
  • Trivedi P, Delgado-Baquerizo M, Anderson IC, et al. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:990.
  • Belnap J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process. 2006;20:3159–3178.
  • Eldridge D, Greene R. Microbiotic soil crusts - a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Res. 1994;32:389–415.
  • Acea MJ, Prieto-Fernández A, Diz-Cid N. Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem. 2003;35:513–524.
  • Brock TD. Primary colonization of surtsey, with special reference to the blue-green algae. Oikos. 1973;24:239–243.
  • Cameron RE, Blank GB, United S, et al. Desert algae: soil crusts and diaphanous substrata as algal habitats. Pasadena (CA): Jet Propulsion Laboratory, California Institute of Technology; 1966.
  • Malam Issa O, Le Bissonnais Y, Défarge C, et al. Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma. 2001;101:15–30.
  • Kheirfam H, Sadeghi SH, Homaee M, et al. Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res. 2017;165:230–238.
  • Lin CS, Wu JT. Tolerance of soil algae and cyanobacteria to drought stress. J Phycol. 2014;50:131–139.
  • Xie Z, Liu Y, Hu C, et al. Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol Biochem. 2007;39:567–572.
  • Karsten U, Holzinger A. Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol. 2012;63:51–63.
  • Starks TL, Shubert LE, Trainor FR. Ecology of soil algae: a review. Phycologia. 1981;20:65–80.
  • Geisen S, Mitchell EA, Adl S, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.
  • Lewis LA, Trainor FR. Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years. Phycologia. 2012;51:662–665.
  • Barclay WR, Lewin RA. Microalgal polysaccharide production for the conditioning of agricultural soils. Plant Soil. 1985;88:159–169.
  • Gray DW, Lewis LA, Cardon ZG. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ. 2007;30:1240–1255.
  • Megharaj M. Healthy levels of soil algae lift plant growth, December ed. In: Farming Ahead, Canberra (Australia): CSIRO; 2001.
  • Zancan S, Trevisan R, Paoletti MG. Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agri Ecosyst Environ. 2006;112:1–12.
  • Wang W, Liu Y, Li D, et al. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem. 2009;41:926–929.
  • Renuka N, Prasanna R, Sood A, et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res. 2016;23:6608–6620.
  • Dineshkumar R, Kumaravel R, Gopalsamy J, et al. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor. 2018;9:793–800.
  • Nisha R, Kaushik A, Kaushik CP. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma. 2007;138:49–56.
  • Malam Issa O, Défarge C, Le Bissonnais Y, et al. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil. 2007;290:209–219.
  • Grzesik M, Romanowska-Duda Z. Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud. 2015;24:1003–1012.
  • De Caire GZ, De Cano MS, Zaccaro De Mulé MC, et al. Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol. 1997;9:249–253.
  • Li ZP, Han CW, Han FX. Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China. Geoderma. 2010;157:206–213.
  • Maqubela MP, Mnkeni PNS, Issa OM, et al. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil. 2009;315:79–92.
  • Paterson E, Thornton B, Midwood AJ, et al. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biol Biochem. 2008;40:2434–2440.
  • Shields LM, Durrell LW. Algae in relation to soil fertility. Bot Rev. 1964;30:92–128.
  • Svircev Z, Tamas I, Nenin P, et al. Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures. Appl Soil Ecol. 1997;6:301–308.
  • Irisarri P, Gonnet S, Monza J. Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. J Biotechnol. 2001;91:95–103.
  • Prasanna R, Babu S, Bidyarani N, et al. Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Ex Agric. 2015;51:42–65.
  • De Mulé MCZ, De Caire GZ, De Cano MS, et al. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Commun Soil Sci Plant Anal. 1999;30:97–107.
  • Fletcher JE, Martin WP. Some Effects of algae and molds in the rain-crust of desert soils. Ecology. 1948;29:95–100.
  • Subrahmanyan R, Relwani LL, Manna GB. Fertility build-up of rice field soils by blue-green algae. Proc Nat Sci India B. 1965;62:252–272.
  • Priya H, Prasanna R, Ramakrishnan B, et al. Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res. 2015;171:78–89.
  • Rao DLN, Burns RG. The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fert Soils. 1990;9:239–244.
  • Roger PA, Tirol A, Ardales S, et al. Chemical composition of cultures and natural samples of N2-fixing blue-green algae from rice fields. Biol Fert Soils. 1986;2:131–146.
  • Mayland HF, Mcintosh TH, Fuller WH. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Madison (WI): Soil Science Society of America Proceedings; 1966.
  • Steffens D, Leppin T, Luschin-Ebengreuth N, et al. Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil-testing methods. Z Pflanzenernähr Bodenk. 2010;173:765–771.
  • Oberson A, Friesen DK, Rao IM, et al. Phosphorus Transformations in an oxisol under contrasting land-use systems: the role of the soil microbial biomass. Plant Soil. 2001;237:197–210.
  • Sharma SB, Sayyed RZ, Trivedi MH, et al. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:587.
  • Mukherjee C, Chowdhury R, Ray K. Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria − a step to phosphorus security in agriculture. Front Microbiol. 2015;6:1421.
  • Whitton BA, Grainger SL, Hawley GR, et al. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol. 1991;21:85–98.
  • Yandigeri MS, Meena KK, Srinivasan R, et al. Effect of mineral phosphate solubilization on biological nitrogen fixation by diazotrophic cyanobacteria. Indian J Microbiol. 2011;51:48–53.
  • Yandigeri MS, Yadav AK, Srinivasan R, et al. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Microbiology. 2011;80:558–565.
  • Singh JS, Kumar A, Rai AN, et al. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol. 2016;7:529.
  • Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosyn Res. 2010;106:123–134.
  • Rossi F, Potrafka RM, Pichel FG, et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem. 2012;46:33–40.
  • Adams DG. Heterocyst formation in cyanobacteria. Curr Opin Microbiol. 2000;3:618–624.
  • Belnap J, Gardner JS. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist. 1993;53:40–47.
  • Bergman B, Gallon JR, Rai AN, et al. N2 Fixation by non-heterocystous cyanobacteria1. FEMS Microbiol Rev. 1997;19:139–185.
  • Sergeeva E, Liaimer A, Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 2002;215:229–238.
  • Burns RG, DeForest JL, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem. 2013;58:216–234.
  • Çakmakçi R, Dönmez F, Aydın A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem. 2006;38:1482–1487.
  • Cassán F, Maiale S, Masciarelli O, et al. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol. 2009;45:12–19.
  • Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–678.
  • Rodrı́guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999;17:319–339.
  • Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem. 2011;43:86–96.
  • Prasanna R, Hossain F, Babu S, et al. Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. South Afr J Plant Soil. 2015;32:199–207.
  • Ellwood NTW, Di Pippo F, Albertano P. Phosphatase activities of cultured phototrophic biofilms. Water Res. 2012;46:378–386.
  • Swarnalakshmi K, Prasanna R, Kumar A, et al. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol. 2013;55:107–116.
  • Prasanna R, Triveni S, Bidyarani N, et al. Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci. 2014;60:349–366.
  • Prasanna R, Adak A, Verma S, et al. Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nutrient dynamics. Ecol Eng. 2015;84:532–541.
  • Adak A, Prasanna R, Babu S, et al. Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr. 2016;39:1216–1232.
  • Bidyarani N, Prasanna R, Babu S, et al. Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res. 2016;188:97–105.
  • Nkonya E, Mirzabaev A, Von Braun J. Economics of land degradation and improvement: a global assessment for sustainable development. Cham (Switzerland): Springer; 2015.
  • Bruinsma J. World agriculture: towards 2015/2030: Summary Report. Rome (Italy): Food and Agriculture Organization of the United Nations (FAO); 2002. (9251047618).
  • Xiong W, Jousset A, Guo S, et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634.
  • Murase J, Hida A, Ogawa K, et al. Impact of long-term fertilizer treatment on the microeukaryotic community structure of a rice field soil. Soil Biol Biochem. 2015;80:237–243.
  • Park CH, Li X, Jia RL, et al. Effects of superabsorbent polymer on cyanobacterial biological soil crust formation in laboratory. Arid Land Res Manage. 2015;29:55–71.
  • Park CH, Li XR, Jia RL, et al. Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Res Manage. 2017;31:81–93.
  • Brady NC, Weil RR. The nature and properties of soils, 12th ed. Upper Saddle River (New Jersey): Prentice Hall Inc.; 1999.
  • Doerr SH, Shakesby RA, Walsh R. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev. 2000;51:33–65.
  • Malam Issa O, Défarge C, Trichet J, et al. Microbiotic soil crusts in the Sahel of western Niger and their influence on soil porosity and water dynamics. Catena. 2009;77:48–55.
  • Hallett PD, Young IM. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur J Soil Sci. 1999;50:35–40.
  • Morales VL, Parlange JY, Steenhuis TS. Are preferential flow paths perpetuated by microbial activity in the soil matrix? A review. J Hydrol. 2010;393:29–36.
  • Bundt M, Albrecht A, Froidevaux P, et al. Impact of preferential flow on radionuclide distribution in soil. Environ Sci Technol. 2000;34:3895–3899.
  • Pivetz B, Steenhuis T. Soil matrix and macropore biodegradation of 2, 4-D. J Environ Qual. 1995;24:564–570.
  • McHale G, Newton MI, Shirtcliffe NJ. Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: A materials science view. Eur J Soil Science. 2005;56:445–452.
  • Fischer T, Veste M, Wiehe W, et al. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena. 2010;80:47–52.
  • Potts M. Desiccation tolerance: a simple process? Trends Microbiol. 2001;9:553–559.
  • De Winder GBM. Ecophysiological strategies of drought-tolerant phototrophic micro-organisms in dune soils [Ph. D. thesis]. Amsterdam (Netherlands): University of Amsterdam; 1990. p. 94.
  • Mager DM. Cyanobacterial soil crusts: analysing resilience in Kalahari sand soils. In: Degenovine KM, editor. Semi-arid environments: agriculture, water supply and vegetation. Hauppauge (NY): NOVA Scientific Publishers, Inc; 2010.
  • Watanabe I, Roger PA. Nitrogen fixation in wetland rice field. New Delhi (India): Oxford and IBH; 1984.
  • Mager DM. Extracellular polysaccharides from cyanobacterial soil crusts and their role in dryland surface processes [Ph.D. Thesis]. Manchester (UK): Manchester Metropolitan University; 2009. p. 273.
  • Roger PA, Reynaud PA. Free-living blue-green algae in tropical soils In: Dommergues YR, Diem HG, editors. Microbiology of tropical soils and plant productivity. Dordrecht (Netherlands): Springer; 1982. p. 147–168.
  • Falchini L, Sparvoli E, Tomaselli L. Effect of Nostoc sp. (Cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fert Soils. 1996;23:346–352.
  • Stark C, Condron LM, Stewart A, et al. Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol. 2007;35:79–93.
  • Mengual C, Schoebitz M, Azcón R, et al. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J Environ Manage. 2014;134:1–7.
  • Kaushik BD, Murti G. Effect of blue green algae and gypsum application on physicochemical properties of alkali soils. Phykos. 1981;20:91–94.
  • Williams JD, Dobrowolski JP, West NE. Microbiotic crust influence on unsaturated hydraulic conductivity. Arid Soil Res Rehab. 1999;13:145–154.
  • Chamizo S, Cantón Y, Miralles I, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol Biochem. 2012;49:96–105.
  • Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst. 2011;42:489–512.
  • Pérez CA, Thomas FM, Silva WA, et al. Patterns of biological nitrogen fixation during 60,000 years of forest development on volcanic soils from south-central Chile. New Zealand J Ecol. 2014;38:189–200.
  • Dagmara SÂ, Jaroslav V, Eliska RÂ. Extracellular enzyme activities in benthic cyanobacterial mats: comparison between nutrient-enriched and control sites in marshes of northern Belize. Aquat Microb Ecol. 2006;44:11–20.
  • Marxsen J, Zoppini A, Wilczek S. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiol Ecol. 2010;71:374–386.
  • De Caire GZ, De Cano MS, Palma RM, et al. Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biol Biochem. 2000;32:1985–1987.
  • Sethunathan N, Megharaj M, Chen ZL, et al. Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem. 2004;52:3030–3035.
  • Palanisami S, Prabaharan D, Uma L. Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol. 2009;94:68–72.
  • Megharaj M, Singleton I, Kookana R, et al. Persistence and effects of fenamiphos on native algal populations and enzymatic activities in soil. Soil Biol Biochem. 1999;31:1549–1553.
  • Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 2011;37:1362–1375.
  • Forlani G, Pavan M, Gramek M, et al. Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol. 2008;49:443–456.
  • Thengodkar RRM, Sivakami S. Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation. 2010;21:637–644.
  • Chungjatupornchai W, Fa-Aroonsawat S. Biodegradation of organophosphate pesticide using recombinant cyanobacteria with surface-and intracellular-expressed organophosphorus hydrolase. J Microbiol Biotechnol. 2008;18:946–951.
  • Zhang S, Qiu CB, Zhou Y, et al. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology. 2011;20:337–347.
  • Jha NM, Mishra KS. Biological responses of cyanobacteria to insecticides and their insecticide degrading potential. Bull Environ Contam Toxicol. 2005;75:374–381.
  • Martinezferez I, Vioque A, Sandmann G. Mutagenesis of an amino acid responsible in phytoene desaturase from Synechocystis for binding of the bleaching herbicide norflurazon. Pestic Biochem Physiol. 1994;48:185–190.
  • Thies F, Backhaus T, Bossmann B, et al. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol. 1996;112:361–370.
  • Galhano V, Peixoto F, Gomes-Laranjo J. Bentazon triggers the promotion of oxidative damage in the Portuguese rice field cyanobacterium Anabaena cylindrica: response of the antioxidant system. Environ Toxicol. 2010;25:517–526.
  • Barton JW, Kuritz T, O’Connor LE, et al. Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol. 2004;65:330–335.
  • Debnath M, Mandal NC, Ray S. Effect of fungicides and insecticides on growth and enzyme activity of four cyanobacteria. Indian J Microbiol. 2012;52:275–280.
  • Wani SH, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4:162–176.
  • Hartung W, Gimmler H. A stress physiological role for abscisic acid (ABA) in lower plants. In: Behnke HD, Lüttge U, Esser K, Kadereit JW, Runge M, editors. Progress in botany: structural botany physiology genetics taxonomy geobotany, Berlin (Germany): Springer; 1994. p. 157–173.
  • Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Russ J Plant Physiol. 2007;54:163–170.
  • Shariatmadari Z, Riahi H, Abdi M, et al. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J Appl Phycol. 2015;27:2279–2287.
  • Stirk WA, Ördög V, Van Staden J, et al. Cytokinin- and auxin-like activity in cyanophyta and microalgae. J Appl Phycol. 2002;14:215–221.
  • Gayathri M, Kumar PS, Prabha AML, et al. In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Res. 2015;7:100–105.
  • Zhao Y. Auxin Biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012;5:334–338.
  • Prasanna R, Joshi M, Rana A, et al. Modulation of IAA production in cyanobacteria by tryptophan and light. Pol J Microbiol. 2010;59:99–105.
  • Hussain A, Shah ST, Rahman H, et al. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci. 2015;6:46.
  • Mazhar S, Cohen JD, Hasnain S. Auxin producing non-heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol. 2013;53:996–1003.
  • Glick BR, Patten CL, Holguin G, et al. Biochemical and genetic mechanisms used by plant growth promoting bacteria. London (UK): Imperial College Press; 1999.
  • Shevchenko GV, Karavaiko NN, Selivankina SY, et al. Possible involvement of cyanobacteria in the formation of plant hormonal system. Russ J Plant Physiol. 2014;61:154–159.
  • Ramanan R, Kim BH, Cho DH, et al. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv. 2016;34:14–29.
  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, et al. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.
  • Kazamia E, Czesnick H, Nguyen TTV, et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–1476.
  • Kim HJ, Choi YK, Jeon HJ, et al. Growth promotion of Chlorella vulgaris by modification of nitrogen source composition with symbiotic bacteria, Microbacterium sp. HJ1. Biomass Bioener. 2015;74:213–219.
  • Nilsson M, Rasmussen U, Bergman B. Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiol Lett. 2005;245:139–144.
  • Meza B, de-Bashan LE, Bashan Y. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol. 2015;166:72–83.
  • De-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum sp. in promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–947.
  • De-Bashan LE, Hernandez JP, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – a comprehensive evaluation. Appl Soil Ecol. 2012;61:171–189.
  • Palacios OA, Bashan Y, Schmid M, et al. Enhancement of thiamine release during synthetic mutualism between Chlorella sorokiniana and Azospirillum brasilense growing under stress conditions. J Appl Phycol. 2016;28:1521–1531.
  • Palacios OA, Gomez-Anduro G, Bashan Y, et al. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol. 2016;92:fiw077.
  • Yoshida K, Igarashi E, Mukai M, et al. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid. Plant Cell Environ. 2003;26:451–457.
  • Holzinger A, Becker B. Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Comm Int Biol. 2015;8:1059978.
  • Bajguz A, Piotrowska-Niczyporuk A. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem. 2013;71:290–297.
  • Salama ES, Kabra AN, Ji MK, et al. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol. 2014;172:97–103.
  • Yu XJ, Sun J, Sun YQ, et al. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J. 2016;112:258–268.
  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, et al. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem. 2012;52:52–65.
  • Raven JA, Giordano M, Beardall J, et al. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond, B, Biol Sci. 2012;367:493–507.
  • Haselkorn R. Developmentally regulated gene rearrangements in prokaryotes. Annu Rev Genet. 1992;26:113–130.
  • Tamagnini P, Axelsson R, Lindberg P, et al. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev. 2002;66:1–20.
  • Masepohl B, Schölisch K, Görlitz K, et al. The heterocyst-specific fdxH gene product of the cyanobacterium Anabaena sp. PCC 7120 is important but not essential for nitrogen fixation. Mol Gen Genet. 1997;253:770–776.
  • Buikema WJ, Haselkorn R. Isolation and complementation of nitrogen fixation mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1991;173:1879–1885.
  • Zhou R, Cao Z, Zhao J. Characterization of HetR protein turnover in Anabaena sp. PCC 7120. Arch Microbiol. 1998;169:417–426.
  • Chaurasia AK, Apte SK. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol. 2011;77:395–399.
  • Spiller H, Latorre C, Hassan M, et al. Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis. J Bacteriol. 1986;165:412–419.
  • Singh DT, Nirmala K, Modi DR, et al. Genetic transfer of herbicide resistance gene(s) from Gloeocapsa spp. to Nostoc muscorum. Mol Gen Genet. 1987;208:436–438.
  • Malik J, Barry G, Kishore G. The herbicide glyphosate. Biofactors. 1989;2:17–25.
  • Chaurasia AK, Adhya TK, Apte SK. Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol. 2013;149:439–445.
  • Liu J, Sun Z, Gerken H, et al. Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol. 2014;98:5069–5079.
  • Singh AK, Chakravarthy D, Singh TPK, et al. Evidence for a role for L-proline as a salinity protectant in the cyanobacterium Nostoc muscorum. Plant Cell Environ. 1996;19:490–494.
  • Rai AK, Tiwari SP. NO3- nutrition and salt tolerance in the cyanobacterium Anabaena sp. PCC 7120 and mutant strains. J Appl Microbiol. 1999;86:991–998.
  • Vaishampayan A, Sinha RP, Gupta AK, et al. N2-fixing rice-field cyanobacterial mutant resistant against uracil herbicide. Ecohydrol Hydrobiol. 2003;3:417–423.
  • Vaishampayan A, Sinha RP, Gupta AK, et al. A cyanobacterial mutant resistant against a bleaching herbicide. J Basic Microbiol. 2000;40:279–288.
  • Liu B, Sun Z, Ma X, et al. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Int J Mol Sci. 2015;16:8201–8212.
  • Tsujimoto R, Kotani H, Yokomizo K, et al. Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Sci Rep. 2018;8:7380.
  • Lou J, Moshiri F, Johnson MK, et al. Mutagenesis studies of the FeSII protein of Azotobacter vinelandii: roles of histidine and lysine residues in the protection of nitrogenase from oxygen damage. Biochemistry. 1999;38:5563–5571.
  • Liu D, Liberton M, Yu J, et al. Engineering nitrogen fixation activity in an oxygenic phototroph. mBio. 2018;9:e01029–18.
  • Cheng Q, Day A, Dowson-Day M, et al. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem Biophys Res Commun. 2005;329:966–975.
  • Yang J, Xie X, Wang X, et al. Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proc Natl Acad Sci USA. 2014;111:E3718–E3725.
  • Liu L, Bilal M, Duan X, et al. Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Tot Environ. 2019;667:444–454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.