2,488
Views
66
CrossRef citations to date
0
Altmetric
Review Articles

Sustainable wheat (Triticum aestivum L.) production in saline fields: a review

&
Pages 999-1014 | Received 19 Mar 2019, Accepted 24 Jul 2019, Published online: 25 Aug 2019

References

  • Khan MS, Rizvi A, Saif S, et al. Phosphate-solubilizing microorganisms in sustainable production of wheat: current perspective. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics in agroecosystem. Singapore: Springer; 2017. p. 51–81.
  • Masuda K. Measuring eco-efficiency of wheat production in Japan: a combined application of life cycle assessment and data envelopment analysis. J Clean Prod. 2016;126:373–381.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Munns R, Day DA, Fricke W, et al. Energy costs of salt tolerance in crop plants. New Phytol. 2019.
  • FAO. High level expert forum—how to feed the world in 2050. Rome (Italy): Economic and Social Development, Food and Agricultural Organization of the United Nations; 2009.
  • Royo A, Abio D. Salt tolerance in durum wheat cultivars. Span J Agric Res. 2003;1:27–35.
  • Olawumi TO, Chan DW. A scientometric review of global research on sustainability and sustainable development. J. Cleaner Prod. 2018;183:231–250.
  • Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res. 2004;85:125–133.
  • James RA, Davenport RJ, Munns R. Physiological characterisation of two genes for Na+ exclusion in durum wheat: Nax1 and Nax2. Plant Physiol. 2006;142:1537–1547.
  • Hussain B, Khan AS, Ali Z. Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turk J Agric For. 2015;39:182–192.
  • Miransari, M, editor. Use of microbes for the alleviation of soil stresses. Vol. 1. New York: Springer; 2014. p. 162.
  • Dubey RK, Tripathi V, Dubey PK, et al. Exploring rhizospheric interactions for agricultural sustainability: the need of integrative research on multi-trophic interactions. J Clean Prod. 2016;115:362–365.
  • Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006;57:1059–1078.
  • De León JLD, Escoppinichi R, Geraldo N, et al. Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica. 2011;181:371–383.
  • Nevo E, Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010;33:670–685.
  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–467.
  • Jacobsen SE, Jensen CR, Liu F. Improving crop production in the arid Mediterranean climate. Field Crops Res. 2012;128:34–47.
  • Miransari M, Smith DL. Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr. 2007;30:1967–1992.
  • Miransari M, Bahrami HA, Rejali F, et al. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem. 2008;40:1197–1206.
  • Miransari M, Smith D. Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact. 2008;3:287–295.
  • Miransari M, Smith DL. Alleviating salt stress on soybean (Glycine max (L.) Merr.)–Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Euro J Soil Biol. 2009;45(2):146–152.
  • Daei G, Ardekani MR, Rejali F, et al. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant Physiol. 2009;166:617–625.
  • Arzanesh MH, Alikhani HA, Khavazi K, et al. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotech. 2011;27:197–205.
  • Dangelico RM, Vocalelli D. “Green Marketing”: an analysis of definitions, strategy steps, and tools through a systematic review of the literature. J. Clean Prod. 2017;165:1263–1279.
  • Hasanuzzaman M, Nahar K, Rahman A, et al. Approaches to enhance salt stress tolerance in wheat. In: Wanyera R, editor. Wheat improvement, management and utilization. Rijeka (Croatia): InTech; 2017.
  • Mazzoncini M, Antichi D, Silvestri N, et al. Organically vs conventionally grown winter wheat: effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour. Food Chem. 2015;175:445–451.
  • Vrček IV, Čepo DV, Rašić D, et al. A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. Food Chem. 2014;143:522–529.
  • Shahbazi F, Nematollahi A. Influences of phosphorus and foliar iron fertilization rate on the quality parameters of whole wheat grain. Food Sci Nutr. 2019;7:442–448.
  • Yan K, Shao H, Shao C, et al. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant. 2013;35:2867–2878.
  • Neumann K, Verburg PH, Stehfest E, et al. The yield gap of global grain production: a spatial analysis. Agricultural Systems. 2010;103:316–326.
  • Royal Society. Reaping the benefits: science and the sustainable intensification of global agriculture. London: Royal Society; 2009.
  • Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108:20260–20264.
  • Pretty JN, Toulmin C, Williams S. Sustainable intensification in African agriculture. Int J Sustain Agric. 2011;9:5–24.
  • Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34:737–752.
  • Houshyar E, Smith P, Mahmoodi-Eshkaftaki M, et al. Sustainability of wheat production in Southwest Iran: a fuzzy-GIS based evaluation by ANFIS. Cogent Food Agric. 2017;3:1327682.
  • Galán-Martín Á, Vaskan P, Antón A, et al. Multi-objective optimization of rainfed and irrigated agricultural areas considering production and environmental criteria: a case study of wheat production in Spain. J Clean Prod. 2017;140:816–830.
  • Mahato A. Climate change and its impact on agriculture. Inter J Sci Res Public. 2014;4:1–6.
  • Munns R, Gilliham M. Salinity tolerance of crops – what is the cost? New Phytol. 2015;208:668–673.
  • Bannayan M, Rezaei EE. Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis. Mitig Adapt Strateg Glob Change. 2014;19:211–227.
  • Jiang J, Huo Z, Feng S, et al. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Res. 2012;137:78–88.
  • Aldesuquy H, Baka Z, El-Shehaby O, et al. Efficacy of seawater salinity on osmotic adjustment and solutes allocation in wheat (Triticum aestivum) flag leaf during grain filling. Int J Plant Physiol Biochem. 2012;4:33–45.
  • Puniran-Hartley N, Hartley J, Shabala L, et al. Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. Plant Physiol Biochem. 2014;83:32–39.
  • Lv S, Jiang P, Nie L, et al. H+‐pyrophosphatase from Salicornia europaea confers tolerance to simultaneously occurring salt stress and nitrogen deficiency in Arabidopsis and wheat. Plant Cell Environ. 2015;38:2433–2449.
  • Yousfi S, Serret MD, Araus JL. Comparative response of δ13C, δ18O and δ15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant Cell Environ. 2013;36:1214–1227.
  • Filek M, Walas S, Mrowiec H, et al. Membrane permeability and micro-and macroelement accumulation in spring wheat cultivars during the short-term effect of salinity-and PEG-induced water stress. Acta Physiol Plant. 2012;34:985–995.
  • Guo R, Yang Z, Li F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol. 2015;15:170.
  • Jiang Q, Hu Z, Zhang H, et al. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J. 2014;2:20–131.
  • Nejadsadeghi L, Maali-Amiri R, Zeinali H, et al. Comparative analysis of physio-biochemical responses to cold stress in tetraploid and hexaploid wheat. Cell Biochem Biophys. 2014;70:399–408.
  • Neffati M, Marzouk B. Changes in essential oil and fatty acid composition in coriander (Coriandrum sativum L.) leaves under saline conditions. Ind Crops Prod. 2008;28:137–142.
  • López-Pérez L, del Carmen Martínez-Ballesta M, Maurel C, et al. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry. 2009;70:492–500.
  • Deinlein U, Stephan AB, Horie T, et al. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19:371–379.
  • Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytol. 2018;217:523–539.
  • Tang X, Mu X, Shao H, et al. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol. 2015;35:425–437.
  • Ismail AM, Horie T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol. 2017;68:405–434.
  • Liang W, Ma X, Wan P, et al. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun. 2018;495:286–291.
  • Yang C, Zhao L, Zhang H, et al. Evolution of physiological responses to salt stress in hexaploid wheat. Proc Natl Acad Sci. 2014;111:11882–11887.
  • Cuin TA, Bose J, Stefano G, et al. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ. 2011;34:947–961.
  • Munns R, James RA, Xu B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol. 2012;30:360–364.
  • Wu H, Shabala L, Zhou M, et al. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance. Plant Cell Physiol. 2014;55:1749–1762.
  • Genc Y, Oldach K, Gogel B, et al. Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breeding. 2013;32:39–59.
  • Genc Y, Oldach K, Verbyla AP, et al. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet. 2010;121:877–894.
  • Genc Y, Oldach K, Taylor J, et al. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytol. 2016;210:145–156.
  • Cuin TA, Parsons D, Shabala S. Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. Functional Plant Biol. 2010;37:656–664.
  • Wu H, Shabala L, Zhou M, et al. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta. 2015a;242:847–857.
  • Yousfi S, Márquez AJ, Betti M, et al. Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. J Integr Plant Biol. 2016;58:48–66.
  • Wu H, Zhu M, Shabala L, et al. K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol. 2015b;57:171–185.
  • Zhu M, Shabala S, Shabala L, et al. Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agro Crop Sci. 2016;202:115–124.
  • Takahashi F, Tilbrook J, Trittermann C, et al. Comparison of leaf sheath transcriptome profiles with physiological traits of bread wheat cultivars under salinity stress. PloS One. 2015;10:e0133322.
  • Moshabaki Isfahani F, Tahmourespour A, Hoodaji M, et al. Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions. J. Clean. Prod. 2018;185:922–928.
  • FAO. FAO statistical yearbook 2013, World Food and Agriculture. Rome (Italy): Food and Agriculture Organization of the United Nations; 2013. p. 289.
  • Tilman D, Cassman KG, Matson PA, et al. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–677.
  • Van Dam JC, Singh R, Bessembinder JJ, et al. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools. Water Resour. Devel. 2006;22:115–133.
  • Singh A. Conjunctive use of water resources for sustainable irrigated agriculture. J Hydrol. 2014;519:1688–1697.
  • Yadav RK, Kumar A, Lal D, et al. Yield responses of winter (Rabi) forage crops to irrigation with saline drainage water. Ex Agric. 2004;40:65–75.
  • Zaman B, Niazi BH, Athar M, et al. Response of wheat plants to sodium and calcium ion interaction under saline environment. Int J Environ Sci Technol. 2005;2:7–12.
  • Tian X, He M, Wang Z, et al. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 2015;77:343–356.
  • Bakare S, Ukwungwu M. On-farm evaluation of seed priming technology in Nigeria. Afr J Gen Agric. 2009;5:93–97.
  • Tahaei A, Soleymani A, Shams M. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques. Appl Biochem Biotechnol. 2016;180:26–40.
  • Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol. 2016;192:38–46.
  • Kaya MD, Okcu G, Atak M, et al. Seed treatments to overcome salt drought stress during germination in sunflower (Helianthus annuus L.). Europ J Agron. 2006;24:291–295.
  • Salehzadeh H, Shishvan MI, Ghiyasi M, et al. Effect of seed priming on germination and seedling growth of wheat (Triticum aestivum L.). Res J Biol Sci. 2009;4:629–631.
  • Latef AAHA, Alhmad MFA, Abdelfattah KE. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul. 2017;36:60–70.
  • Tian Y, Guan B, Zhou D, et al. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci World J. 2014;2014:1.
  • Islam F, Yasmeen T, Ali S, et al. Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiol. Plant. 2015;37:153.
  • Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol. 2016;192:38–46.
  • Ali Q, Daud MK, Haider MZ, et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem. 2017;119:50–58.
  • Bajwa AA, Farooq M, Nawaz A. Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants. 2018;24:239–249.
  • Hussain S, Khaliq A, Tanveer M, et al. Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant. 2018;40:68.
  • Luo Q, Teng W, Fang S, et al. Transcriptome analysis of salt-stress response in three seedling tissues of common wheat. Crop J. 2019;7:378.
  • Liu C, Li S, Wang M, Xia G. A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol. 2012;78:159–169.
  • Wang M, Qin L, Xie C, et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 2014;55:1354–1365.
  • Niu CF, Wei W, Zhou QY, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012;35:1156–1170.
  • Singh S, Sengar RS, Kulshreshtha N, et al. Assessment of multiple tolerance indices for salinity stress in bread wheat (Triticum aestivum L.). J Agric Sci. 2015;7:49–57.
  • Smith DL, Gravel V, Yergeau E. Signaling in the phytomicrobiome. Invited Editorial. Front Plant Sci. 2017;8:611. https://doi.org/10.3389/fpls.2017.00611
  • Smith DL, Subramanian S, Lamont JR, et al. Signaling in the phytomicrobiome: breadth and potential. Front Plant Sci. 2015a;6:709.
  • Smith DL, Ilangumaran G, Praslickova D. Inter-organismal signaling and management of the phytomicrobiome front. Front Plant Sci. 2015b;6:722.
  • Talaat NB, Shawky BT. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot. 2014;98:20–31.
  • Miransari M. Arbuscular mycorrhizal fungi and soil salinity. In: Johnson NC, Gehring C, Jansa J, editors. Mycorrhizal mediation of soil. Boston: Elsevier; 2017. p. 263–277.
  • Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol. 2011a;89:917–930.
  • Stonor RN, Smith SE, Manjarrez M, et al. Mycorrhizal responses in wheat: shading decreases growth but does not lower the contribution of the fungal phosphate uptake pathway. Mycorrhiza. 2014;24:465–472.
  • Lehnert H, Serfling A, Enders M, et al. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum). New Phytol. 2017;215:779–791.
  • Miransari M. Soil microbes and plant fertilization. Appl Microbiol Biotechnol. 2011b;92:875–885.
  • Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 2016;21:573.
  • Singh RP, Jha PN. The Multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One. 2016;11:e0155026.
  • Afridi MS, Mahmood T, Salam A, et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem. 2019;139:569–577.
  • Zhang S, Gan Y, Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol. 2019;19:22.
  • Orhan F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz. J. Microbiol. 2016;47:621–627.
  • Grover M, Ali S, Sandhya V, et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol. 2011;27:1231–1240.
  • Jha Y, Subramanian RB. Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Prakash Verma J, Meena RS, editors. Potassium solubilizing microorganisms for sustainable agriculture. New Delhi: Springer; 2016. p. 149–162.
  • Egamberdieva D, Kamilova F, Validov S, et al. High incidence of plant growth‐stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 2008;10:1–9.
  • Singh RP, Jha PN. Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis. 2017;73:213–222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.