1,726
Views
25
CrossRef citations to date
0
Altmetric
Review Articles

L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies

, , , , &
Pages 1031-1055 | Received 23 Nov 2018, Accepted 24 Jul 2019, Published online: 23 Sep 2019

References

  • Li Y, Wei H, Wang T. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245(Pt B):1588–1602.
  • Jetten MSM, Sinskey AJ. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol. 1995;15(1):73–103.
  • Eggeling L, Bott M. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(8):3387–3394.
  • Hamid S, Abdullah MF, Zakaria Z, et al. Formulation of fish feed with optimum protein-bound lysine for african catfish (Clarias Gariepinus) Fingerlings. Procedia Eng. 2016;148:361–369.
  • Nguyen L, Davis DA. Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus). Aquaculture. 2016;464:331–339.
  • Toledo JB, Furlan AC, Pozza PC, et al. Effect of the reduction of the crude protein content of diets supplemented with essential amino acids on the performance of piglets weighing 6–15 kg. Livest Sci. 2014;168:94–101.
  • Gorton BS, Coker JN, Browder HP, et al. A process for the production of lysine by chemical and microbiological synthesis. Ind Eng Chem Prod Res Dev. 1963;2(4):308–314.
  • D’Este M, Alvarado-Morales M, Angelidaki I. Amino acids production focusing on fermentation technologies – A review. Biotechnol Adv. 2018;36:14–25.
  • Dalibard P, Hess V, Tutuor LL, et al. Amino acids in animal nutrition. Brussels: Fefana; 2014.
  • Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol. 2005;69(1):1–8.
  • Powell CD, Chowdhury MAK, Bureau DP. Assessing the bioavailability of L-lysine sulfate compared to L-lysine HCl in rainbow trout (Oncorhynchus mykiss). Aquaculture. 2015;448:327–333.
  • Yokota A, Ikeda M. Amino acid fermentation. 159th ed. Yokota A, Ikeda M, editors. Tokyo: Springer Japan; 2017.
  • Research Reports World. L-Lysine Market 2019 global leading players, industry updates, future growth, business prospects, forthcoming developments and future investments by forecast to 2025 [Internet]. 2019. [cited 2019 Apr 23]. Available from: http://www.theexpresswire.com/pressrelease/L-Lysine-Market-2019-Global-Leading-Players-Industry-Updates-Future-Growth-Business-Prospects-Forthcoming-Developments-and-Future-Investments-by-Forecast-to-2025_10219650.
  • IHS Markit. Amino acids: chemical economics handbook. [Internet]. 2016. [cited 2018 Apr 8]. Available from: https://ihsmarkit.com/products/major-amino-acids-chemical-economics-handbook.html.
  • Evonik Industries. U.S. expansion of L-lysine capacity completed. 2012.
  • Evonik Industries. Evonik’s Biolys® plant comes on stream in Castro, Brazil [Internet]. 2016. [cited 2019 Apr 23]. Available from: https://corporate.evonik.com/en/Pages/article.aspx?articleId=106361.
  • CJ CheilJedang. Korea’s top food maker starts to expand lysine plant in Brazil [Internet]. 2018. [cited 2019 Apr 23]. Available from: http://www.koreapost.com/news/articleView.html?idxno=7969.
  • OECD/FAO. OECD-FAO Agricultural outlook 2016-2025. Paris: OECD Publishing; 2016.
  • CJ CheilJedang. History. [Internet]. 2018. [cited 2018 Apr 8]. Available from: http://www.cj.co.kr/cj-en/company/history.
  • Ajinomoto Co. Ajinomoto Co., Inc. to double production capacity for pharmaceutical- and food-use amino acids in China. [Internet]. 2013. [cited 2018 Apr 8]. Available from: https://www.ajinomoto.com/en/presscenter/press/detail/g2013_03_01.html.
  • Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J. 2012;3(4):e201210004.
  • Xu J, Zhang J, Guo Y, et al. Improvement of cell growth and L-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses. J Ind Microbiol Biotechnol. 2013;40(12):1423–1432.
  • Crespi G, D’Este P, Fontana P, et al. The impact of academic patenting on university research and its transfer. Res Policy. 2011;40(1):55–68.
  • Wong C-Y, Fung H-N. Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies. Scientometrics. 2017;111(2):841–867.
  • OECD. Patents and innovation: trends and policy challenges. [Internet]. Paris: OECD Publishing; 2004. Available from: http://www.oecd.org/science/sci-tech/24508541.pdf.
  • Huang M-H, Yang H-W, Chen D-Z. Industry–academia collaboration in fuel cells: a perspective from paper and patent analysis. Scientometrics. 2015;105(2):1301–1318.
  • Takenouchi E, Yamamoto T, Nikolova DK, et al. Lysine production by s-(β-aminoethyl)- L-cysteine resistant mutants of Candida pellicutosa. Agric Biol Chem. 1979;43:727–734.
  • Abe K, Kuroda A, Takeshita R. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock. Appl Microbiol Biotechnol. 2017;101(5):2057–2066.
  • Lindner SN, Seibold GM, Henrich A, et al. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol. 2011;77(11):3571–3581.
  • Matano C, Uhde A, Youn J-W, et al. Engineering of Corynebacterium glutamicum for growth and l-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol. 2014;98(12):5633–5643.
  • Gopinath V, Meiswinkel TM, Wendisch VF, et al. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol.. 2011;92(5):985–996.
  • Pak C, Kondo A, Noda H, inventors; Bio Energy Kk., BioLeaders Japan Kk., Kobe University, assignees, et al. Novel Corynebacterium expressing protein having amino acid fermentation ability, on its cell surface layer, useful for producing amino acid such as lysine. Japan patent JP 2007089506-A. 2005; Sep 29.
  • Liu X, Zhang W, Zhao Z, et al. Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol. 2017;37(4):541–551.
  • Doi H, Tokura Y, Mori Y, et al. Identification of enzymes responsible for extracellular alginate depolymerization and alginate metabolism in Vibrio algivorus. Appl Microbiol Biotechnol. 2017;101(4):1581–1592.
  • Holátko J, Elisáková V, Prouza M, et al. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol. 2009;139(3):203–210.
  • Nakayama K, Kohata M, Tanaka Y, et al. Biotechnical production of L-lysine by culturing methanol-utilising Protaminobacter mutants. Germany; 1974.
  • Ohnishi J, Mizoguchi H, Takeno S, et al. Characterization of mutations induced by N-methyl-N’-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res. 2008;649(1–2):239–244.
  • Kinoshita S, Nakayama K, Kitada S, inventors; Kyowa Hakko Kogyo Co. Ltd., assignee. Method of producing l-lysine by fermentation. United States of America patent US 2979439A. 1958. Nov 04.
  • Samanta TK, Bhattacharyya R. L-lysine production by S-2-aminoethyl-L-cysteine-resistant mutants of Arthrobacter globiformis. Folia Microbiol. 1991;36(1):59–66.
  • Kodym A, Afza R. Physical and chemical mutagenesis. Methods Mol Biol. 2003;236:189–203.
  • Ekwealor IA, Obeta J. Screening of UV-irradiated and S-2-aminoethyl-L-cysteine resistant mutants of Bacillus megaterium for improved lysine accumulation. African J Biotechnol. 2006;5:2312–2314.
  • Javed A, Jamil A, Rezaei-Zarchi S. Optimization and hyper-expressed production of lysine through chemical mutagenesis of Brevibacterium flavum by N-nitroso-N-ethyturea. African J Microbiol Res. 2011;5:5230–5238.
  • Schrumpf B, Eggeling L, Sahm H. Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1992;37:566–571.
  • Shiio I, Sugimoto S, Kawamura K. Isolation and properties of alpha-ketobutyrate-resistant lysine-producing mutants from Brevibacterium flavum. Acta Biotechnol. 1993;57:51–55.
  • Crociani F, Selli A, Crisetig G, et al. L-lysine production at 65 °C by auxotrophic-regulatory mutants of Bacillus stearothermophilus. J Ind Microbiol. 1991;8(2):127–132.
  • Sano K, Shiio I. Microbial production of L-lysine II. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol. 1970;16(5):373–391.
  • Shiio I, Toride Y, Sugimoto S. Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Folia Microbiol. (Praha). 1984;36:447–450.
  • Ozaki H, Shiio I. Production of lysine by pyruvate kinase mutants of Brevibacterium flavum. Agric Biol Chem. 1983;47:1569–1576.
  • Shiio I, Ozaki H, Ujigawa-Takeda K. Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem. 1982;46:101–107.
  • Shiio I, Sugimoto S, Toride Y. Studies on mechanisms for lysine production by pyruvate kinase-deficient mutants of Brevibacterium flavum. Agric Biol Chem. 1984;48:1551–1558.
  • Kyriacou A, Balis C, Typas MA. Screening of UV-irradiated and S-2-aminoethyl-L-cysteine resistant mutants of Bacillus megaterium for improved lysine accumulation. Appl Biochem Biotechnol. 1997;66(3):281–289.
  • Costa-Ferreira M, Duarte JC. Glucose-utilization by lysine-producing fluoroacetate-sensitive mutants of Corynebacterium glutamicum. Appl Biochem Biotechnol. 1991;27(3):251–257.
  • Costa-Ferreira M, Duarte JC. Amino acid accumulation by an analog sensitive mutant of Corynebacterium glutamicum. Biotechnol Lett.. 1992;14(11):1025–1028.
  • Kim S, Lee K, Sung J, inventors; Cheil Jedang Corp., assignee, et al. New Corynebacterium glutamicum mutant with resistance to monensin, for producing L-lysine in high yield. World patent WO 200253707-A1. 2001. Dec 28.
  • Park YH, Lim SJ, Moon JO, inventors; Cheil Jedang Corp., assignee, et al. New microorganism of Corynebacterium genus which is resistant to kanamycin, useful for producing L-lysine. United States of America patent US 2007122889-A1. 2006. Nov 21.
  • Sen K. Effect of dimethyl-sulfoxide on lysine production by a mutant of Bacillus subtilis with low homoserine dehydrogenase activity. Folia Microbiol. (Praha). 1991;36:447–450.
  • Shiio I, Yokota A, Sugimoto S-I. Effect of pyruvate kinase deficiency on L-lysine productivities of mutants with feedback-resistant aspartokinases. Agric Biol Chem. 1987;51:2485–2493.
  • Hilliger M, Hertel W. Regulation of L-lysine biosynthesis in prototrophic revertants of Corynebacterium glutamicum. J Basic Microbiol. 1997;37(1):29–40.
  • Tosaka O, Koichi T, Hirose Y. Production of L-lysine by leucine auxotrophs derived from AEC resistant mutant of Brevibacterium lactofermentum. Agric Biol Chem. 1978;42:1181–1186.
  • Tosaka O, Takinami K, Hirose Y. L-Lysine Production by S-(2-Aminoethyl) L-cysteine and α-amino-β-hydroxyvareiic acid resistant mutants of Brevibacterium lactofermentum. Agric Biol Chem. 1978;42:745–752.
  • Tosaka O, Yoshihara Y, Ikeda S, et al. Production of L-lysine by fluoropyruvate-sensitive mutants of Brevibacterium lactofermentum. Agric Biol Chem. 1985;49:1305–1312.
  • Kawahara Y, Nakamori S, Esaki N, inventors. Ajinomoto Co Inc., assignee, et al. L-lysine prodn. useful in animal nutrition - by fermenting new selena:lysine resistant mutants of Brevibacterium or Corynebacterium, providing high yield. France patent FR 2668496-A1; 1991. Oct 29.
  • Ishii T, Yokomori M, Miwa H, inventors. Ajinomoto Co. Inc., assignee. New mutants for high yield L-lysine prodn. – derived from Brevibacterium or Corynebacterium parent strains and resistant to pulmycin. Japan patent JP 4091794-A. 1990. Aug 03.
  • Ladner W, Pressler U, Siegel W, inventors; Basf Ag., assignee. Production of microorganisms with increased lysine productivity – comprises forming Corynebacterium or Brevibacterium mutant strains and selecting those which are resistant to reverse coupling. Germany patent DE 4023576-A. 1991. Jul 25.
  • Kubota K, Yoshihara Y, Okada H, inventors; Ajinomoto Co. Inc., assignee. L-lysine production from bacteria – cultivating new strains of Corynebacterium glutamicum. United States of America patent US 3871960-A. 1973. Sep 25.
  • Sano K, Tsuchida T, Sano T, inventors; Ajinomoto Co. Inc., assignee. L-lysine production by fermentation - using Escherichia mutant strain obtained by insertion of lysine-production DNA into hybrid plasmid and incorporation into host strain. United States of America patent US 3871960-A. 1980. Jul 23.
  • Shimazaki K, Nakamura Y, Yamada Y, inventors; Ajinomoto Co. Inc., assignee, et al. Production of L-lysine by fermentation using ethylene glycol resistant mutants of Brevibacterium or Corynebacterium. United States of America patent US 4411997-A. 1981. Dec 22.
  • Murakami Y, Miwa H, Nakamori S, inventors. Ajinomoto Co. Inc., assignee. L-lysine prodn. used as animal feed additive – by fermentation using mutant strain of Corynebacterium resistant to 5-(2-aminoethyl)-L-cysteine. United States of America patent US 5250423-A. 1991. Apr 22.
  • Hagino H, Kobayashi S, Araki K, et al. L-lysine production by Bacillus licheniformis. Biotechnol Lett. 1981;3(8):425–430.
  • Nakanishi T, Hirao T, Azuma T, inventors; Kyowa Kakko Kogyo Co. Ltd., assignee, et al. Fermentative L-lysine production in high yield – using new Corynebacterium or Brevibacterium strains. United States of America patent US 4657860-A. 1985. Jul 15.
  • Follner C, Babel W. Isolation of auxotrophic mutants from Acetobacter methanolicus MB-58. Acta Biotechnol. 1992;12:3–11.
  • Meiswinkel TM, Rittmann D, Lindner SN, et al. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol. 2013;145:254–258.
  • Wu C, Reed-Hamer B, West TP. Selection of lysine-excreting mutants from Aureobasidium pullulans. J Basic Microbiol. 1995;35(1):57–60.
  • Tosaka O, Hirakawa H, Yoshihara Y, et al. Production of L-lysine by alanine auxotrophs derived from AEC resistant mutant of Brevibacterium lactofermentum. Agric Biol Chem. 1978;42:1773–1778.
  • Cho YJ, Lee JH, Park NH, inventors; Cheil Sugar Co. Ltd., assignee, et al. New Corynebacterium glutamicum strain – obtained by mutation and used for producing increased yields of L-lysine. United States of America patent US 5268293-A. 1992. Mar 16.
  • Patnaik R. Engineering complex phenotypes in industrial strains. Biotechnol Prog. 2008;24(1):38–47.
  • Ptitsyn LR, Altman IB, Kotliarova VA, inventors; Ajinomoto Co. Inc., assignee, et al. New L-amino acid-producing bacterium of Enterobacteriaceae family, which is modified to enhance an activity of N-acetylglucosamine permease, useful for producing L-amino acid, e.g. L-threonine, L-lysine, or L-histidine. World patent WO 2006078051-A1. 2006. Jan 18.
  • Dong X, Quinn PJ, Wang X. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv. 2011;29(1):11–23.
  • Lee C-S, Nam J-Y, Son E-S, et al. Next-generation sequencing-based genome-wide mutation analysis of l-lysine-producing Corynebacterium glutamicum ATCC 21300 strain. J Microbiol. 2012;50(5):860–863.
  • Neuner A, Wagner I, Sieker T, et al. Production of L-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J. Biotechnol. 2013;163(2):217–224.
  • Wang Z, Moslehi-Jenabian S, Solem C, et al. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain. Eng Life Sci. 2015;15(1):73–82.
  • Chen Z, Bommareddy RR, Frank D, et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80(4):1388–1393.
  • Neuner A, Heinzle E. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Biotechnol J. 2011;6(3):318–329.
  • Xu J, Zhang J, Han M, et al. A method for simultaneous gene overexpression and inactivation in the Corynebacterium glutamicum genome. J Ind Microbiol Biotechnol. 2016;43(10):1417–1427.
  • Korosh TC, Markley AL, Clark RL, et al. Engineering photosynthetic production of L-lysine. Metab Eng. 2017;44:273–283.
  • Diao L, Fang Z, Hu D, inventors; Langfang Plum Biological Technology Dev., assignee, et al. New recombinant strain useful for fermentative production of lysine, comprising mutant lysC gene encoding mutant lysC protein. China patent CN 105734004-A. 2016. Mar 02.
  • Meng G, Wei A, Ma F, inventors; Ningxia Eppen Biotech Co. Ltd., assignee, et al. Producing L-lysine by fermentation or increasing the amount of L-lysine by fermentation comprises e.g. replacing at least one promoter of gene on Corynebacterium chromosome with EP5 promoter and fermentation culturing. World patent WO 2018040469-A1. 2017. Jan 09.
  • Jakobsen OM, Brautaset T, Degnes KF, et al. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol. 2009;75(3):652–661.
  • Choi JS, Hwang BJ, Kwon YD, inventors; Paik Kwang Ind Co. Ltd., assignee, et al. New recombinant vector useful in host cell for production of amino acid, preferably L-lysine, comprises lysA gene and pycA gene connected to superoxide dismutase promoter. South Korea patent KR 2014074665-A. 2012. Dec 10.
  • Bathe B, Claes W, inventors; Evonik Degussa Gmbh., assignee. New polynucleotide isolated from Corynebacterium glutamicum, useful for improving production of L-amino acids, preferably L-valine, L-isoleucine and L-lysine. United States patent US 2010261257-A1. 2010. Mar 31.
  • Xu J-Z, Yang H-K, Zhang W-G. NADPH metabolism: a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Crit. Rev. Biotechnol. 2018;38(7):1061–1076.
  • Xu J, Xia X, Zhang J, et al. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers. Plasmid. 2014;72:9–17.
  • Molenaar D, Van der Rest ME, Drysch A. New coryneform bacterium in which the mdhA gene is attenuated, preferably eliminated, useful for fermentative production of L-amino acids such as L-lysine. United States patent US 2004142454-A1. 2003. Dec 05.
  • Becker J, Klopprogge C, Schroder H, et al. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol. 2009;75(24):7866–7869.
  • Park YH, Lim SJ, Lee HJ, inventors; Ajinomoto Co. Inc., assignee, et al. Method for preparation of alanine auxotroph by deleting alanine aminotransferase gene in Corynebacterium sp. and increasing concentration of pyruvate in cell and production method of L-lysine by using the same. South Korea patent KR 2006080023-A. 2005. Jan 04.
  • Brautaset T, Jakobsen OM, Degnes KF, et al. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C. Appl Microbiol Biotechnol. 2010;87(3):951–964.
  • Takeshita R, Wakasa Y, Takeshita A, et al. Producing L-amino acid e.g. L-lysine, by culturing modified bacteria produced by increasing expression of gltP gene and/or gltS gene which belongs to Enterobacteriaceae in culture medium, and accumulating L-amino acid in culture medium. United States of America patent US 2011281311-A1. 2011. May 24.
  • Asakura Y, inventor; Ajinomoto Co. Inc., assignee. Novel bacteria belonging to Enterobacteriaceae family, obtained by lowering expression of gene e.g. gene encoding inner membrane ABC transporter permease protein (ydcU), for producing L-amino acids e.g. L-lysine used as feed additive. World patent WO 2009031564-A1. 2008. Sep 03.
  • Altman IB, Ptitsyn LR, Altman I, inventors; Ajinomoto Co. Inc., assignee, et al. New bacterium of the Enterobacteriaceae family that is modified to attenuate expression of the yahN gene, useful for producing L-amino acid of aspartate family, e.g. L-aspartate, L-threonine, L-lysine, or L-methionine. World patent WO 2009022754-A1. 2008. Aug 13.
  • Moon M-W, Park S-Y, Choi S-K, et al. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol.. 2007;12(1-2):43–50.
  • Xu J, Zhang J, Liu D, et al. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTSGlc) genes. Can J Microbiol. 2016;62(12):983–992.
  • Lindner SN, Petrov DP, Hagmann CT, et al. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol. 2013;79(8):2588–2595.
  • Ikeda M, Mizuno Y, Awane S, et al. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;90(4):1443–1451.
  • Moon M-W, Kim H-J, Oh T-K, et al. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett. 2005;244(2):259–266.
  • Einbu A, Vårum KM. Characterization of chitin and its hydrolysis to GlcNAc and GlcN. Biomacromolecules. 2008;9(7):1870–1875.
  • Barrett E, Stanton C, Zelder O, et al. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol. 2004;70(5):2861–2866.
  • Adachi N, Takahashi C, Ono-Murota N, et al. Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl Microbiol Biotechnol.. 2013;97(16):7165–7172.
  • Schneider J, Niermann K, Wendisch VF. Production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. 2011;154(2–3):191–198.
  • Christopher M, Anusree M, Mathew A, et al. Detoxification of acidic biorefinery waste liquor for production of high value amino acid. Bioresour Technol. 2016;213:270–275.
  • Rybak KV, Slivinskaya EA, Kozlov YI, inventors; Ajinomoto Co. Inc., assignee, et al. New L-amino acid-producing bacterium of the Enterobacteriaceae family, which has been modified to enhance an activity of L-arabinose permease, useful for producing L-amino acids, e.g. L-threonine, L-lysine, or L-histidine. World patent WO 2006068273-A1. 2005. Dec 19.
  • Rybak KV, Slivinskaya EA, Savrasova EA, inventors. Ajinomoto Co. Inc., assignee, et al. New bacterium of the Enterobacteriaceae family, which has been modified to enhance an activity of D-xylose permease, useful for producing L-amino acid, e.g. L-threonine, L-lysine, L-histidine, L-phenylalanine, or L-arginine. World patent WO 2006043730-A1. 2005. Dec 21.
  • Rittmann D, Lindner SN, Wendisch VF. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol. 2008;74(20):6216–6222.
  • Anusree M, Wendisch VF, Nampoothiri KM. Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresour Technol. 2016;213:239–244.
  • Choi JW, Yim SS, Jeong KJ. Development of a potential protein display platform in Corynebacterium glutamicum using mycolic acid layer protein, NCgl1337, as an anchoring motif. Biotechnol J. 2018;13(2):1700509–1700519.
  • Milner JL, Vink B, Wood JM. Transmembrane amino acid flux in bacterial cells. Crit Rev Biotechnol. 1987;5(1):1–47.
  • Ishikawa K, Asahara T, Gunji Y, et al. Disruption of metF increased L-lysine production by Methylophilus methylotrophus from methanol. Biosci Biotechnol Biochem. 2008;72(5):1317–1324.
  • Gunji Y, Yasueda H, inventors; Ajinomoto Co. Inc., assignee. New DNA encoding mutant form of LysE protein, useful for transformation of methanol-utilizing bacteria for pro duction of lysine and arginine, also new transformants. France patent FR 2847264-A1. 2003. Nov 03.
  • Liu Y, Liu Y, Wang M. Design, Optimization and application of small molecule biosensor in metabolic engineering. Front Microbiol. 2017;8:1–10.
  • Schallmey M, Frunzke J, Eggeling L, et al. Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. Curr Opin Biotechnol. 2014;26:148–154.
  • Wang Y, Li Q, Zheng P, et al. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol. 2016;43(9):1227–1235.
  • Wang Q, Tang S-Y, Yang S. Genetic biosensors for small-molecule products: design and applications in high-throughput screening. Front Chem Sci Eng. 2017;11(1):15–26.
  • Ameen S, Ahmad M, Mohsin M, et al. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells. J Nanobiotechnology. 2016;14(1):49.
  • Wang J, Gao D, Yu X, et al. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol. 2015;99(20):8527–8536.
  • Zhou L-B, Zeng A-P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol. 2015;4(6):729–734.
  • Zhou L-B, Zeng A-P. Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol. 2015;4(12):1335–1340.
  • Varma A, Palsson BO. Predictions for oxygen supply control to enhance population stability of engineered production strain. Biotechnol Bioeng. 1994;43:275–285.
  • Kiss DR, Stephanopoulos G. Metabolic characterization of a L-lysine-producing strain by continuous culture. Biotechnol Bioeng. 1992;39(5):565–574.
  • Ahmed S, Afzal M, Rajoka MI. Kinetic and thermodynamic characterization of lysine production process in Brevibacterium lactofermentum. Appl Biochem Biotechnol. 2013;170(1):81–90.
  • Sassi A, Fauvart L, Deschamps A, et al. Fed-batch production of L-lysine by Corynebacterium glutamicum. Biochem Eng J. 1998;1:85–90.
  • Skjerdal O, Sletta H, Flenstad S, et al. Changes in cell volume, growth and respiration rate in response to hyperosmotic stress of NaCI, sucrose and glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol.. 1995;43(6):1099–1106.
  • Skjerdal O, Sletta H, Flenstad S, et al. Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1996;44(5):635–642.
  • Kawahara Y, Nakamura T, Yoshihara Y, et al. Effect of glycine betaine on the sucrose catabolism of an L-lysine producing mutant of Brevibacterium lactofermentum. Appl Microbiol Biotechnol. 1990;34:340–343.
  • Kelle R, Laufer B, Brunzema C, et al. Reaction engineering analysis of L-lysine transport by Corynebacterium glutamicum. Biotechnol Bioeng.. 1996;51(1):40–50.
  • Xu J-Z, Wu Z-H, Gao S-J, et al. Rational modification of tricarboxylic acid cycle for improving l-lysine production in Corynebacterium glutamicum. Microb Cell Fact. 2018;17(1):105.
  • Ying H, He X, Li Y, et al. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol. 2014;172(8):3835–3843.
  • Xu J, Han M, Ren X, et al. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli. Biochem Eng J. 2016;114:79–86.
  • Becker J, Zelder O, Häfner S, et al. From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13(2):159–168.
  • Sassi AH, Coello N, Deschamps AM, et al. Effect of medium composition on L-Lysine production by a variant strain of Corynebacterium glutamicum ATCC 21513. Biotechnol Lett. 1990;12:295–298.
  • Razak MA, Viswanath B. Comparative studies for the biotechnological production of L-Lysine by immobilized cells of wild-type Corynebacterium glutamicum ATCC 13032 and mutant MH 20-22 B. 3. Biotech. 2015;5:765–774.
  • van Ooyen J, Noack S, Bott M, et al. Proline addition increases the efficiency of l-lysine production by Corynebacterium glutamicum. Eng Life Sci. 2013;13(4):393–398.
  • Shiio I, Toride Y, Sugimoto S-I. Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem. 1984;48:3091–3098.
  • Hirao T, Nakano T, Azuma T, et al. L-Lysine production in continuous culture of an L-lysine hyperproducing mutant of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1989;32:269–273.
  • Satiawihardja B, Cail RG, Rogers PL. Kinetic analysis of L-lysine production by a fluoropyruvate sensitive mutant of B. lactofermentum. Biotechnol Lett. 1993;15(6):577–582.
  • Kiss RD, Stephanopoulos G. Metabolic activity control of the L-lysine fermentation by restrained growth fed-batch strategies. Biotechnol Prog. 1991;7(6):501–509.
  • Ackerson MD, Clausen EC, Gaddy JL. Lysine production in continuous culture. Appl Biochem Biotechnol. 1989;20–21:511–528.
  • Coello MN, Hadjsassi A, Lebeault JM. Effect of the growth rate on the enzymatic activities of L-lysine-producing cells of Corynebacterium glutamicum. World J Microbiol Biotechnol. 2001;17(4):337–342.
  • Coello N, Pan JG, Lebeault JM. Physiological aspects of L-lysine production: effect of nutritional limitations on a producing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1992;38:259–262.
  • Nasri M, Dhouib A, Zorguani F, et al. Production of lysine by using immobilized living Corynebacterium sp. cells. Biotechnol Lett. 1989;11(12):865–870.
  • Weuster-Botz D, Kelle R, Frantzen M, et al. Substrate controlled fed-batch production of L-lysine with Corynebacterium glutamicum. Biotechnol Prog. 1997;13(4):387–393.
  • Georgiev T, Ratkov A, Ivanova V, et al. New approach for solving an ecological problems caused by manure—Modelling and optimisation. Biotechnol Biotechnol Equip. 1999;13(1):49–54.
  • Nelofer R, Syed Q, Nadeem M. Statistical optimization of process variables for L-lysine production by Corynebacterium glutamicum. Turkish J Biochem. 2008;33:50–57.
  • Teófilo RF, Ferreira MC. Planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial. Quím Nova. 2006;29(2):338–350. Portuguese.
  • Ohnishi J, Ikeda M. Comparisons of potentials for L-lysine production among different Corynebacterium strains. Biosci Biotechnol Biochem. 2006;70(4):1017–1020.
  • Lee GH, Hur W, Bremmon CE, et al. Lysine production from methanol at 50 degrees C using Bacillus methanolicus: modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation. Biotechnol Bioeng. 1996;49(6):639–653.
  • Livshits VA, Doroshenko VG, Mashko SV, inventors; Ajinomoto Co. Inc., assignee, et al. Novel bacterium belonging to genus Escherichia which harbors sucrose non-phosphotransferase system genes and has an ability to produce an amino acid useful for producing amino acid such as lysine, valine. European patent EP 1318196-A1. 2001. Apr 20.
  • Escalante A, Salinas Cervantes A, Gosset G, et al. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012;94(6):1483–1494.
  • Hua Q, Fu P-C, Yang C, et al. Microaerobic lysine fermentations and metabolic flux analysis. Biochem Eng J. 1998;2(2):89–100.
  • Xafenias N, Kmezik C, Mapelli V. Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry. 2017;117:40–47.
  • Placy J, Culik K, Ulbert S, inventors; Spofa Spofene Farm NP assignee. Biochemical production of lysine using new Corynebacterium strain. Hungary HU18097-T.1980. Apr 28.
  • Gunji Y, Yasueda H. Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol. 2006;127(1):1–13.
  • Tsujimoto N, Gunji Y, Ogawa-Miyata Y, et al. L-Lysine biosynthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer. J Biotechnol. 2006;124(2):327–337.
  • Gunji Y, Yasueda H, Hirai R, inventors; Ajinomoto Co. Inc., assignee, et al. Novel methanol-utilizing-bacteria comprising DNA encoding dihydrodipicolinate synthetase whose feedback inhibition by L-lysine is desensitized, and DNA encoding mutant LysE, useful for producing L-lysine. World patent WO 2007088970-A1. 2007. Feb 02.
  • Tsujimoto N, Yasueda H, Kawahara Y, inventors; Ajinomoto Co. Inc., assignee, et al. New dihydrodipicolinate reductase from the thermophilic bacterium Bacillus methanolicus, useful in production of L-lysine. European patent EP 1621624-A1; 2000. Aug 01.
  • Schneider K, Schütz V, John GT, et al. Optical device for parallel online measurement of dissolved oxygen and pH in shake flask culture. Bioprocess Biosyst Eng. 2010;33(5):541–547.
  • Liu Y-C, Wu W-T, Tsao J-H. Fed-batch culture for L-lysine production via on-line state estimation and control. Bioprocess Eng. 1993;9(4):135–139.
  • Käß F, Prasad A, Tillack J, et al. Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess Biosyst Eng. 2014;37(12):2567–2577.
  • Ju L, Chase G. Improved scale-up strategies of bioreactors. Bioprocess Eng. 1992;8(1–2):49–53.
  • Sanchez-Marroquin A, Ledezma M, Barreiro J. Oxygen transfer and scale-up in lysine production by Ustilago maydis. Biotechnol Bioeng. 1967;8:419–429.
  • Buchholz J, Graf M, Freund A, et al. CO2/HCO3− perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2014;98:8563–8572.
  • Lemoine A, Maya Martínez-Iturralde N, Spann R, et al. Response of Corynebacterium glutamicum exposed to oscillating cultivation in a two- and novel three-compartmant scale-down bioreactor. Biotechnol Bioeng. 2015;112(6):1220–1231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.