1,428
Views
31
CrossRef citations to date
0
Altmetric
Review Articles

Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers

, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1056-1077 | Received 28 Sep 2018, Accepted 21 Jun 2019, Published online: 25 Sep 2019

References

  • World Health Organization. Global tuberculosis report 2016. Geneva, Switzerland: WHO Press; 2016.
  • Rachkov A, Patskovsky S, Soldatkin A, et al. Surface plasmon resonance detection of oligonucleotide sequences of the rpoB genes of Mycobacterium tuberculosis. Talanta. 2011;85(4):2094–2099.
  • Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.
  • Zhou L, He X, He D, et al. Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol. 2011;2011:1.
  • Simsek H, Alpar S, Uçar N, et al. Comparison of tuberculin skin testing and T-SPOT.TB for diagnosis of latent and active tuberculosis. Jpn J Infect Dis. 2010;63(2):99–102.
  • Metcalfe JZ, Cattamanchi A, McCulloch CE, et al. Test variability of the QuantiFERON-TB gold in-tube assay in clinical practice. Am J Respir Crit Care Med. 2013;187(2):206–211.
  • Ramos A, Carvalho T, Ribeiro M, et al. Capilia TB-Neo assay: a new tool for rapid distinction between tuberculous and non-tuberculous mycobacteria. Int J Tuberc Lung Dis. 2016;20(6):753–756.
  • Shah M, Hanrahan C, Wang ZY, et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database Syst Rev. 2016;17(5):1–108.
  • Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics—a review. Biosens Bioelectron. 2018;115:14–29.
  • Nour-Neamatollahi A, Siadat SD, Yari S, et al. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis. Saudi J Biol Sci. 2018;25(3):418–425.
  • Zeka AN, Tasbakan S, Cavusoglu C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol. 2011;49(12):4138–4141.
  • Kim JH, Kim YJ, Ki C-S, et al. Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. J Clin Microbiol. 2011;49(1):173–176.
  • Lawn SD, Mwaba P, Bates M, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13(4):349–361.
  • Chin KL, Sarmiento ME, Norazmi MN, et al. DNA markers for tuberculosis diagnosis. Tuberculosis. 2018;113:139–152.
  • Eddabra R, Benhassou HA. Rapid molecular assays for detection of tuberculosis. Pneumonia. 2018;10(1):4.
  • Nguyen VAT, Nguyen HV, Dinh TV, et al. Evaluation of Loopamp™MTBC detection kit for diagnosis of pulmonary tuberculosis at a peripheral laboratory in a high burden setting. Diagn Microbiol Infect Dis. 2018;90(3):190–195.
  • Bholla M, Kapalata N, Masika E, et al. Evaluation of Xpert® MTB/RIF and Ustar EasyNAT™ TB IAD for diagnosis of tuberculous lymphadenitis of children in Tanzania: a prospective descriptive study. BMC Infect Dis. 2016;16(1):246.
  • Mhimbira FA, Bholla M, Sasamalo M, et al. Detection of Mycobacterium tuberculosis by EasyNAT diagnostic kit in sputum samples from Tanzania. J Clin Microbiol. 2015;53(4):1342–1344.
  • Golichenari B, Velonia K, Nosrati R, et al. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron. 2018;113:124–135.
  • Small PM, Pai M. Tuberculosis diagnosis—time for a game change. N Engl J Med. 2010;363(11):1070–1071.
  • Pai M, Minion J, Sohn H, et al. Novel and improved technologies for tuberculosis diagnosis: progress and challenges. Clin Chest Med. 2009;30(4):701–716.
  • Herrera V, Perry S, Parsonnet J, et al. Clinical application and limitations of interferon-γ release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis. 2011;52(8):1031–1037.
  • Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet. 2011;377(9776):1495–1505.
  • Kakhki RK, Neshani A, Sankian M, et al. The short-chain dehydrogenases/reductases (SDR) gene: a new specific target for rapid detection of Mycobacterium tuberculosis complex by modified comparative genomic analysis. Infect Genet Evol. 2019;70:158–164.
  • Tarashi S, Fateh A, Mirsaeidi M, et al. Mixed infections in tuberculosis: the missing part in a puzzle. Tuberculosis. 2017;107:168–174.
  • Perumal V, Hashim U. Advances in biosensors: principle, architecture and applications. J Appl Biomed. 2014;12(1):1–15.
  • Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–3196.
  • Nosrati R, Dehghani S, Karimi B, et al. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron. 2018;117:1–14.
  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, et al. Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol. 2016;4(11):11.
  • Zhu C, Yang G, Li H, et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem. 2015;87(1):230–249.
  • Luo X, Davis JJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev. 2013;42(13):5944–5962.
  • Velusamy V, Arshak K, Korostynska O, et al. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010;28(2):232–254.
  • Palchetti I, Mascini M. Amperometric biosensor for pathogenic bacteria detection. In: Zourob M., Elwary S., Turner A., editors. Principles of bacterial detection: biosensors, recognition receptors and microsystems. New York, NY: Springer; 2008. p. 299–312.
  • Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–1763.
  • Hammond JL, Formisano N, Estrela P, et al. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016;60(1):69–80.
  • Sarma AK, Vatsyayan P, Goswami P, et al. Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron. 2009;24(8):2313–2322.
  • ŠVancara I, VytřAs K, Kalcher K, et al. Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50‐years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis. 2009;21(1):7–28.
  • Giljohann DA, Seferos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–3294.
  • De Volder MF, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–539.
  • Chapman J, Power A, Kiran K, et al. New twists in the plot: recent advances in electrochemical genosensors for disease screening. J Electrochem Soc. 2017;164(13):B665–B673.
  • Koncki R. Recent developments in potentiometric biosensors for biomedical analysis. Anal Chim Acta. 2007;599(1):7–15.
  • Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol. 2003;32(1):3–13.
  • Chen Y, Wang Z, Liu Y, et al. Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis. 2018;37(6):1021–1037.
  • Limpert G. The power of pulsed amperometric detection coupled with chromatography for analyzing carbohydrates. Am Lab. 2011;43:28–30.
  • Pinheiro VG, Ramos L, Monteiro HS, et al. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. Braz J Infect Dis. 2006;10(6):374–379.
  • Façanha MC, Gondim A, Pinheiro VG, et al. Intestinal barrier function and serum concentrations of rifampin, isoniazid and pyrazinamide in patients with pulmonary tuberculosis. Braz J Infect Dis. 2009;13(3):210–217.
  • Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis. Tuberculosis. 2008;88(4):317–323.
  • Metters JP, Kampouris DK, Banks CE. Fingerprinting breath: electrochemical monitoring of markers indicative of bacteria Mycobacterium tuberculosis infection. J Braz Chem Soc. 2014;25(9):1667–1672.
  • Bahadır EB, Sezgintürk MK. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta. 2015;132:162–174.
  • Zhang P, Chai X, Xu C, et al., editors. Electrochemical biosensor based on modified graphene oxide for tuberculosis diagnosis. 2011 IEEE 9th International Conference on ASIC (ASICON); 2011 Oct 25–28; Xiamen, China. IEEE; 2011.
  • Zhang Y, Yan Y, Zhang B, et al. Fabrication of an interferon-gamma-based ITO detector for latent tuberculosis diagnosis with high stability and lower cost. J Solid State Electrochem. 2015;19(10):3111–3119.
  • Rao V, Sharma M, Pandey P, et al. Comparison of different carbon ink based screen-printed electrodes towards amperometric immunosensing. World J Microbiol Biotechnol. 2006;22(11):1135–1143.
  • Renedo OD, Alonso-Lomillo M, Martínez MA. Recent developments in the field of screen-printed electrodes and their related applications. Talanta. 2007;73(2):202–219.
  • Díaz-González M, González-García MB, Costa-García A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron. 2005;20(10):2035–2043.
  • Wang L, Leng C, Tang S, et al. Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron. 2012;38(1):421–424.
  • Diouani MF, Ouerghi O, Refai A, et al. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. Mater Sci Eng C. 2017;74:465–470.
  • Xu C, Chai X-s, Zhang S-l, et al., editors. Immunosensor for detecting pulmonary tuberculosis markers in human serum. 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT); 2010 Nov 1–4; Shanghai, China. IEEE; 2010.
  • Prabhakar N, Solanki PR, Kaushik A, et al. Peptide nucleic acid immobilized biocompatible silane nanocomposite platform for Mycobacterium tuberculosis detection. Electroanalysis. 2010;22(22):2672–2682.
  • Yeo W-H, Liu S, Chung J-H, et al. Rapid detection of Mycobacterium tuberculosis cells by using microtip-based immunoassay. Anal Bioanal Chem. 2009;393(6–7):1593–1600.
  • Kim J-H, Yeo W-H, Shu Z, et al. Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip. 2012;12(8):1437–1440.
  • Kim J-H, Hiraiwa M, Gao D, et al., editors. Dendritic nanotip for low-cost detection of Mycobacterium tuberculosis. ASME 2012 International Mechanical Engineering Congress and Exposition. 2012 Nov 9–15; Houston, Texas, USA. American Society of Mechanical Engineers; 2012.
  • Hiraiwa M, Kim J-H, Lee H-B, et al. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis. J Micromech Microeng. 2015;25(5):055013.
  • Moschou D, Greathead L, Pantelidis P, et al. Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes. Biosens Bioelectron. 2016;86:805–810.
  • Yang Z, Jian Z, Chen X, et al. Electrochemical impedance immunosensor for sub-picogram level detection of bovine interferon gamma based on cylinder-shaped TiO2 nanorods. Biosens Bioelectron. 2015;63:190–195.
  • Liu Y, Rahimian A, Krylyuk S, et al. Nanowire aptasensors for electrochemical detection of cell-secreted cytokines. ACS Sens. 2017;2(11):1644–1652.
  • Wang Y, Mazurek GH, Alocilja EC. Measurement of interferon gamma concentration using an electrochemical immunosensor. J Electrochem Soc. 2016;163(5):B140–B145.
  • Zhang Y, Zhang B, Ye X, et al. Electrochemical immunosensor for interferon-γ based on disposable ITO detector and HRP-antibody-conjugated nano gold as signal tag. Mater Sci Eng C. 2016;59:577–584.
  • Zhou B, Zhu M, Qiu Y, et al. Novel electrochemiluminescence-sensing platform for the precise analysis of multiple latent tuberculosis infection markers. ACS Appl Mater Interfaces. 2017;9(22):18493–18500.
  • Zhou B, Zhu M, Hao Y, et al. Potential-resolved electrochemiluminescence for simultaneous determination of triple latent tuberculosis infection markers. ACS Appl Mater Interfaces. 2017;9(36):30536–30542.
  • Chutichetpong P, Cheeveewattanagul N, Srilohasin P, et al. Rapid screening drug susceptibility test in tuberculosis using sandwich electrochemical immunosensor. Anal Chim Acta. 2018;1025:108–117.
  • Cui H, Li S, Yuan Q, et al. An AC electrokinetic impedance immunosensor for rapid detection of tuberculosis. Analyst. 2013;138(23):7188–7196.
  • Bart M, Stigter E, Stapert H, et al. On the response of a label-free interferon-γ immunosensor utilizing electrochemical impedance spectroscopy. Biosens Bioelectron. 2005;21(1):49–59.
  • Wang X, Han X, Ma A, et al. Fabrication of electrochemical immunosensor for interferon-γ determination and its application of tuberculosis diagnosis. Int J Electrochem Sci. 2017;12(8):7262–7271.
  • Dijksma M, Kamp B, Hoogvliet J, et al. Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level. Anal Chem. 2001;73(5):901–907.
  • Zhu M, Tang Y, Wen Q, et al. Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles. Microchim Acta. 2016;183(5):1739–1748.
  • Soo P-C, Horng Y-T, Chang K-C, et al. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes. 2009;23(5):240–246.
  • Kara P, Cavusoglu C, Cavdar S, et al. Direct electrochemical genosensing for multiple point mutation detection of Mycobacterium tuberculosis during the development of rifampin resistance. Biosens Bioelectron. 2009;24(6):1796–1800.
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545.
  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, et al. Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem. 2011;417(1):73–79.
  • Liu C, Jiang D, Xiang G, et al. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst. 2014;139(21):5460–5465.
  • Barreda-García S, González-Álvarez MJ, de-los-Santos-Álvarez N, et al. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens Bioelectron. 2015;68:122–128.
  • Barreda-García S, Miranda-Castro R, de-los-Santos-Álvarez N, et al. Comparison of isothermal helicase-dependent amplification and PCR for the detection of Mycobacterium tuberculosis by an electrochemical genomagnetic assay. Anal Bioanal Chem. 2016;408(30):8603–8610.
  • Ng BY, Wee EJ, West NP, et al. Naked-eye colorimetric and electrochemical detection of Mycobacterium tuberculosis toward Rapid screening for active case finding. ACS Sens. 2016;1(2):173–178.
  • Miodek A, Mejri N, Gomgnimbou M, et al. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87(18):9257–9264.
  • Tsaloglou M-N, Nemiroski A, Camci-Unal G, et al. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings. Anal Biochem. 2018;543:116–121.
  • Liu Q, Lim BKL, Lim SY, et al. Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA). Sens Actuators B: Chem. 2018;255:1595–1603.
  • Zhang Q, March G, Noel V, et al. Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: application to Mycobacterium tuberculosis. Biosens Bioelectron. 2012;32(1):163–168.
  • Costa MP, Andrade CA, Montenegro RA, et al. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci. 2014;433:141–148.
  • Zaid MHM, Abdullah J, Yusof NA, et al. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens Actuators B: Chem. 2017;241:1024–1034.
  • Yan Z, Gan N, Zhang H, et al. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers. Biosens Bioelectron. 2015;71:207–213.
  • Park JS, Goo N-I, Kim D-E. Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir. 2014;30(42):12587–12595.
  • Li F, Yu Y, Li Q, et al. A homogeneous signal-on strategy for the detection of rpoB genes of Mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal Chem. 2014;86(3):1608–1613.
  • Yesil M, Donmez S, Arslan F. Development of an electrochemical DNA biosensor for detection of specific Mycobacterium tuberculosis sequence based on poly (l-glutamic acid) modified electrode. J Chem Sci. 2016;128(11):1823–1829.
  • Wang J, Wang F, Dong S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. J Electroanal Chem. 2009;626(1–2):1–5.
  • Yan F, Wang F, Chen Z. Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sens Actuators B: Chem. 2011;160(1):1380–1385.
  • Zribi B, Roy E, Pallandre A, et al. A microfluidic electrochemical biosensor based on multiwall carbon nanotube/ferrocene for genomic DNA detection of Mycobacterium tuberculosis in clinical isolates. Biomicrofluidics. 2016;10(1):014115.
  • Hsieh K, Patterson AS, Ferguson BS, et al. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop‐mediated isothermal amplification. Angew Chem. 2012;124(20):4980–4984.
  • Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26(11):4614–4618.
  • Das M, Dhand C, Sumana G, et al. Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection. Appl Phys Lett. 2011;99(14):143702.
  • Yu X, Chai Y, Jiang J, et al. Sensitive ECL sensor for sequence-specific DNA from Mycobacterium tuberculosis based on N-(aminobutyl)-N-ethylisoluminol functionalized gold nanoparticles labeling. J Photochem Photobiol. 2012;241:45–51.
  • Jiang J, Chai Y, Cui H. The electrogenerated chemiluminescence detection of IS6110 of Mycobacterium tuberculosis based on a luminol functionalized gold nanoprobe. RSC Adv. 2011;1(2):247–254.
  • Prabhakar N, Singh H, Malhotra BD. Nucleic acid immobilized polypyrrole–polyvinylsulphonate film for Mycobacterium tuberculosis detection. Electrochem Commun. 2008;10(6):821–826.
  • Taghdisi SM, Danesh NM, Emrani AS, et al. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron. 2015;73:245–250.
  • Nezami A, Nosrati R, Golichenari B, et al. Nanomaterial-based aptasensors and bioaffinity sensors for quantitative detection of 17β-estradiol. Trends Anal Chem. 2017;94:95–105.
  • Bayat P, Nosrati R, Alibolandi M, et al. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie. 2018;154:132–155.
  • Ansari N, Ghazvini K, Ramezani M, et al. Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Microchim Acta. 2018;185(1):21.
  • Dhiman A, Kalra P, Bansal V, et al. Aptamer-based point-of-care diagnostic platforms. Sens Actuators B: Chem. 2017;246:535–553.
  • Trausch JJ, Shank-Retzlaff M, Verch T. Replacing antibodies with modified DNA aptamers in vaccine potency assays. Vaccine. 2017;35(41):5495.
  • Ramezani M, Danesh NM, Lavaee P, et al. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron. 2015;70:181–187.
  • Nosrati R, Golichenari B, Nezami A, et al. Helicobacter pylori point-of-care diagnosis: nano-scale biosensors and microfluidic systems. Trends Anal Chem. 2017;97:428–444.
  • Tang X-L, Zhou Y-X, Wu S-M, et al. CFP10 and ESAT6 aptamers as effective Mycobacterial antigen diagnostic reagents. J Infect. 2014;69(6):569–580.
  • Baassi L, Sadki K, Seghrouchni F, et al. Evaluation of a multi-antigen test based on B-cell epitope peptides for the serodiagnosis of pulmonary tuberculosis. Int J Tuberc Lung Dis. 2009;13(7):848–854.
  • Zhu C, Liu J, Ling Y, et al. Evaluation of the clinical value of ELISA based on MPT64 antibody aptamer for serological diagnosis of pulmonary tuberculosis. BMC Infect Dis. 2012;12(1):1.
  • Thakur H, Kaur N, Sareen D, et al. Electrochemical determination of M. tuberculosis antigen based on poly (3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta. 2017;171:115.
  • Lai G, Zhang H, Tamanna T, et al. Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline. Anal chem. 2014;86(3):1789–1793.
  • Kumar NA, Choi H-J, Shin YR, et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano. 2012;6(2):1715–1723.
  • Bai L, Chen Y, Bai Y, et al. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials. 2017;133:11–19.
  • Chen Y, Li Y, Yang Y, et al. A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis. Microchim Acta. 2017;184(6):1801–1808.
  • Qin L-H, Liu Z-H, Yang H, et al. Dynamic evolution and immunoreactivity of aptamers binding to polyclonal antibodies against MPT64 antigen of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis. 2014;33(7):1199–1209.
  • Kitamura Y, Niwa T, Naya S-I, et al. In situ room temperature synthesis of a polyaniline–gold–titanium (IV) dioxide heteronanojunction system. Chem Commun. 2013;49(5):520–522.
  • Li X, Zhang H, Wang G, et al. A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors. J Mater Chem. 2010;20(47):10598–10601.
  • Golichenari B, Nosrati R, Farokhi-Fard A, et al. Nano-biosensing approaches on tuberculosis: defy of aptamers. Biosens Bioelectron. 2018;117:319–331.
  • Crulhas BP, Hadley D, Liu Y, et al. An electrochemical aptasensor for detection of bovine interferon gamma. Anal Methods. 2017;9(31):4527–4532.
  • Liu Y, Yan J, Howland MC, et al. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal Chem. 2011;83(21):8286–8292.
  • Liu Y, Tuleouva N, Ramanculov E, et al. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem. 2010;82(19):8131–8136.
  • Liu Y, Kwa T, Revzin A. Simultaneous detection of cell-secreted TNF-α and IFN-γ using micropatterned aptamer-modified electrodes. Biomaterials. 2012;33(30):7347–7355.
  • Chen Y, Pui TS, Kongsuphol P, et al. Aptamer-based array electrodes for quantitative interferon-γ detection. Biosens Bioelectron. 2014;53:257–262.
  • Liu Y, Matharu Z, Rahimian A, et al. Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode. Biosens Bioelectron. 2015;64:43–50.
  • Yan G, Wang Y, He X, et al. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification. Biosens Bioelectron. 2013;44:57–63.
  • Dirks R, Pierce NA, inventors; Google Patents, assignee. Hybridization chain reaction; 2012.
  • Zhao J, Chen C, Zhang L, et al. An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosens Bioelectron. 2012;36(1):129–134.
  • Liu C, Xiang G, Jiang D, et al. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Analyst. 2015;140(22):7784–7791.
  • Yin Y, Shi L, Chu Z, et al. A highly sensitive electrochemical IFN-γ aptasensor based on a hierarchical graphene/AuNPs electrode interface with a dual enzyme-assisted amplification strategy. RSC Adv. 2017;7(71):45053–45060.
  • Miao X, Ko C-N, Vellaisamy K, et al. A cyclometalated iridium (III) complex used as a conductor for the electrochemical sensing of IFN-γ. Sci Rep. 2017;7(1):42740.
  • Abnous K, Danesh NM, Ramezani M, et al. A triple-helix molecular switch-based electrochemical aptasensor for interferon-gamma using a gold electrode and Methylene Blue as a redox probe. Microchim Acta. 2017;184(10):4151–4157.
  • Ding S, Mosher C, Lee XY, et al. Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sens. 2017;2(2):210–217.
  • Xia J, Song D, Wang Z, et al. Single electrode biosensor for simultaneous determination of interferon gamma and lysozyme. Biosens Bioelectron. 2015;68:55–61.
  • Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem. 2008;80(6):1883–1890.
  • Farid S, Meshik X, Choi M, et al. Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron. 2015;71:294–299.
  • Wang J, Cai X, Rivas G, et al. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens Bioelectron. 1997;12(7):587–599.
  • Torati SR, Reddy V, Yoon SS, et al. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens Bioelectron. 2016;78:483–488.
  • Varshney M, Li Y. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. Biosens Bioelectron. 2009;24(10):2951–2960.
  • Elshafey R, Tlili C, Abulrob A, et al. Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker Murine double minute 2 in brain tissue. Biosens Bioelectron. 2013;39(1):220–225.
  • He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci. 2009;2(2):215–219.
  • Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods. 2013;5(5):1098–1115.
  • Bahadır EB, Sezgintürk MK. A review on impedimetric biosensors. Artif Cells Nanomed Biotechnol. 2016;44(1):248–262.
  • Xia X, Chao D, Zhang Y, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high‐rate and long‐cycle sodium‐ion storage. Small. 2016;12(22):3048–3058.
  • Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent. 2007;35(11):819–826.
  • Gopinath SC, Perumal V, Kumaresan R, et al. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchim Acta. 2016;183(10):2697–2703.
  • Matsishin M, Rachkov A, Errachid A, et al. Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sens Actuators B Chem. 2016;222:1152–1158.
  • Bizid S, Blili S, Mlika R, et al. Direct E-DNA sensor of Mycobacterium tuberculosis mutant strain based on new nanocomposite transducer (Fc-ac-OMPA/MWCNTs). Talanta. 2018;184:475–483.
  • Mathebula NS, Pillay J, Toschi G, et al. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis. Chem Commun. 2009;23:3345–3347.
  • He F, Zhao J, Zhang L, et al. A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta. 2003;59(5):935–941.
  • Pourmir A, Bahrmand A, Far SE, et al. Rapid diagnosis of Mycobacterium tuberculosis with electrical impedance spectroscopy in suspensions using interdigitated microelectrode. J Anal Chem. 2016;71(7):676–684.
  • Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem. 2008;391(2):455–471.
  • Beis K, Srikannathasan V, Liu H, et al. Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state. J Mol Biol. 2005;348(4):971–982.
  • Driscoll MD, McLean KJ, Cheesman MR, et al. Expression and characterization of Mycobacterium tuberculosis CYP144: common themes and lessons learned in the M. tuberculosis P450 enzyme family. Biochim Biophys Acta-Proteins Proteom. 2011;1814(1):76–87.
  • Wang J, Rivas G, Cai X, et al. Sequence-specific electrochemical biosensing of M. tuberculosis DNA. Anal Chim Acta. 1997;337(1):41–48.
  • Bratov A, Abramova N, Ipatov A. Recent trends in potentiometric sensor arrays—a review. Anal Chim Acta. 2010;678(2):149–159.
  • Thapliyal N, Chiwunze TE, Karpoormath R, et al. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples. RSC Adv. 2016;6(62):57580–57602.
  • Scholz F. Voltammetric techniques of analysis: the essentials. ChemTexts. 2015;1(4):17.
  • Muratova IS, Kartsova LA, Mikhelson KN. Voltammetric vs. potentiometric sensing of dopamine: advantages and disadvantages, novel cell designs, fundamental limitations and promising options. Sens Actuators B: Chem. 2015;207:900–906.
  • Zelada-Guillen GA, Tweed-Kent A, Niemann M, et al. Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens Bioelectron. 2013;41:366–371.
  • Wang Y, Ye Z, Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors. 2012;12(3):3449–3471.
  • Koksal D, Unsal E, Poyraz B, et al. The value of serum interferon-gamma level in the differential diagnosis of active and inactive pulmonary tuberculosis. Tuberkuloz ve toraks. 2006;54(1):17–21.
  • Hussain S, Afzal N, Javaid K, et al. Level of interferon gamma in the blood of tuberculosis patients. Iran J Immunol. 2010;7(4):240–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.