379
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization

&
Pages 415-431 | Received 02 Apr 2019, Accepted 28 Oct 2019, Published online: 13 Feb 2020

References

  • Giri A, Dhingra V, Giri CC, et al. Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol. Adv. 2001;19:175–199.
  • Niazian M. Application of genetics and biotechnology for improving medicinal plants. Planta. 2019;249:953–973.
  • Chen G, Li Y, Wang W, et al. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: a review. Expert Opin Ther Pat. 2018;28:415–427.
  • Negi JS, Bisht VK, Singh P, et al. Naturally occurring xanthones: chemistry and biology. J Appl Chem. 2013;2013. Article ID 621459.
  • Tocci N, Gaid M, Kaftan F, et al. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytol. 2018;217:1099–1112.
  • El-Seedi H, El-Barbary M, El-Ghorab D, et al. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr Med Chem. 2010;17:854–901.
  • Nicolaou KC, Pfefferkorn JA, Roecker AJ, et al. Natural product-like combinatorial libraries based on privileged structures. 1. General principles and solid-phase synthesis of benzopyrans. J Am Chem Soc. 2000;122:9939–9953.
  • Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants. 2009;3:1222–1239.
  • Ramachandra Rao S, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv. 2002;20:101–153.
  • Farag MA, El Sayed AM, El Banna A, et al. Metabolomics reveals distinct methylation reaction in MeJA elicited Nigella sativa callus via UPLC–MS and chemometrics. Plant Cell Tiss Organ Cult. 2015;122:453–463.
  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018;248:1–18.
  • Sarker SD, Nahar L. An introduction to computational phytochemistry. In: Sarker SD, Nahar L, editors. Computational phytochemistry. Amsterdam: Elsevier; 2018. p. 1–41.
  • Liu Q, Jo YH, Ahn JH, et al. Optimization of extraction condition of methyl jasmonate-treated wild ginseng adventitious root cultures using response surface methodology. Nat Prod Sci. 2018;24:103–108.
  • Amdoun R, Benyoussef EH, Benamghar A, et al. Prediction of hyoscyamine content in Datura stramonium L. hairy roots using different modeling approaches: response surface methodology (RSM), artificial neural network (ANN) and kriging. BiochemEng J. 2019;144:8–17.
  • Frick S, Ounaroon A, Kutchan TM. Combinatorial biochemistry in plants: the case of O-methyltransferases. Phytochemistry. 2001;56:1–4.
  • Verpoorte R, El-Barbary M, El-Ghorab D, et al. Naturally occurring xanthones; latest investigations: isolation, structure elucidation and chemosystematic significance. Curr Med Chem. 2009;16:2581–2626.
  • Bennett GJ, Lee HH. Xanthones from guttiferae. Phytochemistry. 1989;28:967–998.
  • Fiesel T, Gaid M, Müller A, et al. Molecular cloning and characterization of a xanthone prenyltransferase from hypericum calycinum cell cultures. Molecules. 2015;20:15616–15630.
  • Peters S, Schmidt W, Beerhues L. Regioselective oxidative phenol couplings of 2,3’,4,6-tetrahydroxybenzophenone in cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L. Planta. 1997;204:64–69.
  • Barillas W, Beerhues L. 3-Hydroxybenzoate: coenzyme A ligase from cell cultures of Centaurium erythraea: isolation and characterization. Biol Chem. 2000;381:155–160.
  • Nualkaew N, Morita H, Shimokawa Y, et al. Benzophenone synthase from Garcinia mangostana L. pericarps. Phytochemistry. 2012;77:60–69.
  • Kitanov GM, Nedialkov PT. Benzophenone O-glucoside, a biogenic precursor of 1,3,7-trioxygenated xanthones in Hypericum annulatum. Phytochemistry. 2001;57:1237–1243.
  • Fujita M, Inoue T. Biosynthesis of mangiferin in Anemarrhena asphodeloides Bunge. II. C-glucosylation of mangiferin. Chem Pharm Bull. 1980;28:2482–2486.
  • Zubrická D, Mišianiková A, Henzelyová J, et al. Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Rep. 2015;34:1953–1962.
  • Farag MA, Deavours BE, de Fatima A, et al. Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiol. 2009;151:1096–1113.
  • Schmidt W, Abd El-Mawla AMA, Wolfender JL, et al. Xanthones in cell cultures of Hypericum androsaemum. Planta Med. 2000;66:380–381.
  • El-Mawla AMA. Xanthones from cell cultures of Hypericum gnidioides seem. Bull Pharm Sci. 2005;28:105–111.
  • Dias ACP, Seabra RM, Andrade PB, et al. Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Sci. 2000;150:93–101.
  • Mulinacci N, Giaccherini C, Santamaria AR, et al. Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var. angustifolium (sin. Fröhlich) Borkh. Plant Physiol Biochem. 2008;46:414–420.
  • Ishiguro K, Nakajima M, Fukumoto H, et al. A xanthone substituted with an irregular monoterpene in cell suspension cultures of Hypericum patulum. Phytochemistry. 1995;39:903–905.
  • Ishiguro K, Nakajima M, Fukumoto H, et al. Co-occurrence of prenylated xanthones and their cyclization products in cell suspension cultures of Hypericum patulum. Phytochemistry. 1995;38:867–869.
  • Dias ACP, Seabra RM, Andrade PB, et al. Xanthone production in calli and suspended cells of Hypericum perforatum. J Plant Physiol. 2001;158:821–827.
  • Pasqua G, Avato P, Monacelli B, et al. Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci. 2003;165:977–982.
  • Tocci N, Simonetti G, D’Auria FD, et al. Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol. 2011;91:977–987.
  • Baque MA, Hahn EJ, Paek KY. Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnol Rep. 2010;4:109–116.
  • Su WW. Bioprocessing technology for plant cell suspension cultures. Appl Biochem Biotechnol. 1995;50:189–230.
  • Orhan DD, Aslan M, Aktay G, et al. Evaluation of hepatoprotective effect of Gentiana olivieri herbs on subacute administration and isolation of active principle. Life Sci. 2003;72:2273–2283.
  • Sezik E, Aslan M, Yesilada E, et al. Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay- directed fractionation techniques. Life Sci. 2005;76:1223–1238.
  • Jia N, Li Y, Wu Y, et al. Comparison of the anti-inflammatory and analgesic effects of Gentiana macrophylla Pall. and Gentiana straminea maxim.; and identification of their active constituents. J Ethnopharmacol. 2012;144:638–645.
  • Senol FS, Yagci Tuzun C, Toker G, et al. An in vitro perspective to cholinesterase inhibitory and antioxidant activity of five Gentiana species and Gentianella caucasea. Int J Food Sci Nutr. 2012;63:802–812.
  • Mikuła A, Rybczyński JJ, Skierski J, et al. Somatic embryogenesis of Gentiana genus IV.: characterisation of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions. In: Hvoslef-Eide AK, Preil W, editors. Liquid culture systems for in vitro plant propagation. Dordrecht: Springer; 2005. p. 345–358.
  • Ando H, Hirai Y, Fujii M, et al. The chemical constituents of fresh Gentian root. J Nat Med. 2007;61:269–279.
  • Menković N, Savikin-Fodulović K, Momcilović I, et al. Quantitative determination of secoiridoid and gamma-pyrone compounds in Gentiana lutea cultured in vitro. Planta Med. 2009;66:96–98.
  • Šavikin K, Menković N, Zdunić G, et al. Antimicrobial activity of Gentiana lutea L. extracts. Z Naturforsch C J Biosci. 2009;64:341–342.
  • Sarasan V, Cripps R, Ramsay MM, et al. Conservation in vitro of threatened plants – progress in the past decade. In Vitro Cell Dev Biol Plant. 2006;42:206–214.
  • Piatczak E, Chmiel A, Wysokinska H. Mist trickling bioreactor for Centaurium erythraea Rafn growth of shoots and production of secoiridoids. Biotechnol Lett. 2005;27:721–724.
  • Piatczak E, Wielanek M, Wysokinska H. Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci. 2005;168:431–437.
  • Jankovic T. Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellum cultured in vitro. In Vitro. 2003;39:203–207.
  • Jankovic T, Krstic D, Savikin-Fodulovic K, et al. Xanthone compounds of Centaureum erythraea grown in nature and cultured in vitro. Pharm Pharmacol Lett. 2000;10:23–25.
  • Krstić D, Janković T, Šavikin-Fodulović K, et al. Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellum cultured in vitro. In Vitro Cell Dev Biol Plant. 2003;39:203–207.
  • Sakamoto K, Iida K, Sawamura K, et al. Anthocyanin production in cultured cells of Aralia cordata Thunb. Plant Cell Tiss Organ Cult. 1994;36:21–26.
  • Ishimaru K, Sudo H, Satake M, et al. Amarogentin, amaroswerin and four xanthones from hairy root cultures of Swertia japonica. Phytochemistry. 1990;29:1563–1565.
  • Struwe L, Kadereit JW, Klackenberg J, et al. Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe L, Albert V, editors. Gentianaceae systematics natural history. Cambridge: Cambridge University Press; 2002. p. 21–309.
  • Nadinic E, Gorzalczany S, Rojo A, et al. Topical anti-inflammatory activity of Gentianella achalensis. Fitoterapia. 1999;70:166–171.
  • Krsti ĆMĆD, Vinterhalter B, Jankovi ĆT, et al. Biotechnology and phytochemistry of Gentianella species from the central regions of the balkan peninsula. In: Rybczyński J, Davey M, Mikuła A. The gentianaceae: biotechnology and applications. Vol. 2. Berlin: Springer; 2015. p. 93–112.
  • Sharma N, Chandel KPS, Paul A. In vitro propagation of Gentiana kurroo – an indigenous threatened plant of medicinal importance. Plant Cell Tiss Organ Cult. 1993;34:307–309.
  • Vinterhalter B, Janković T, Šavikin K, et al. Propagation and xanthone content of Gentianella austriaca shoot cultures. Plant Cell Tiss Organ Cult. 2008;94:329–335.
  • Sevón N, Oksman-Caldentey KM. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med. 2002;68:859–868.
  • Tusevski O, Stanoeva JP, Stefova M, et al. Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol. 2013;8:1010–1022.
  • Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol. 2007;74:1175–1185.
  • di Guardo A, Cellarova E, Koperdakova J, et al. Hairy root induction and plant regeneration in Hypericum perforatum L. J. Genet Breed. 2003;57:269–278.
  • Hosokawa K, Matsuki R, Oikawa Y, et al. Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult. 1997;51:137–140.
  • Mishiba KI, Nishihara M, Abe Y, et al. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol. 2006;23:33–38.
  • Momčilović I, Grubišić D, Kojić M, et al. Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tissue Organ Cult. 1997;50:1–6.
  • Zhang HL, Xue SH, Pu F, et al. Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russ J Plant Physiol. 2010;57:110–117.
  • Vinterhalter B, Krstić-Milošević D, Janković T, et al. Gentiana dinarica Beck. hairy root cultures and evaluation of factors affecting growth and xanthone production. Plant Cell Tiss Organ Cult. 2015;121:667–679.
  • Krstić-Milošević D, Janković T, Vinterhalter B, et al. Influence of carbohydrate source on xanthone content in root cultures of Gentiana dinarica Beck. Plant Growth Regul. 2013;71:147–155.
  • Tovilovic-Kovacevic G, Krstic-Milosevic D, Vinterhalter B, et al. Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line. Phytomedicine. 2018;47:151–160.
  • Vinterhalter B, Krstić Milošević D, Janković T, et al. Quantitative determination of secoiridoid and xanthone glycosides of Gentiana dinarica Beck cultured in vitro. Acta Physiol. Plant. 2013;35:567–574.
  • Hayta S, Gurel A, Akgun IH, et al. Induction of Gentiana cruciata hairy roots and their secondary metabolites. Biologia. 2011;66:618–625.
  • Bensaddek L, Villarreal ML, Fliniaux MA. Induction and growth of hairy roots for the production of medicinal compounds. Electron J Integr Biosci. 2008;3:2–9.
  • Vinterhalter B, Savić J, Zdravković-Korać S, et al. Agrobacterium rhizogenes-mediated transformation of Gentiana utriculosa L. and xanthones decussatin-1-O-primeveroside and decussatin accumulation in hairy roots and somatic embryo-derived transgenic plants. Ind Crops Prod. 2019;130:216–229.
  • Tocci N, Ferrari F, Santamaria AR, et al. Chitosan enhances xanthone production in Hypericum perforatum subsp. angustifolium cell cultures. Nat Prod Res. 2010;24:286–293.
  • Yin ZQ, Wang Y, Ye WC, et al. Chemical constituents of Hypericum perforatum (St. John’s wort) growing in China. Biochem Syst Ecol. 2004;32:521–523.
  • Likhitwitayawuid K, Chanmahasathien W, Ruangrungsi N, et al. Xanthones with antimalarial activity from Garcinia dulcis. Planta Med. 1998;64:281–282.
  • Nai-Ki M, Wen-Kui L, Zhang M, et al. Effects of euxanthone on neuronal differentiation. Life Sci. 1999;66:347–354.
  • Tocci N, D'Auria FD, Simonetti G, et al. Bioassay-guided fractionation of extracts from Hypericum perforatum invitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol Biochem. 2013;70:342–347.
  • Badiali C, De Angelis G, Simonetti G, et al. Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. Plant Cell Rep. 2018;37:1471–1484.
  • Chandra S, Chandra R. Engineering secondary metabolite production in hairy roots. Phytochem Rev. 2011;10:371–395.
  • Conceição LFR, Ferreres F, Tavares RM, et al. Induction of phenolic compounds in Hypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation. Phytochemistry. 2006;67:149–155.
  • Thomma B, Eggermont K, Broekaert WF, et al. Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem. 2000;38:421–427.
  • Walker TS, Pal Bais H, Vivanco JM. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry. 2002;60:289–293.
  • Kitanov GM, Nedialkov PT. Mangiferin and isomangiferin in some Hypericum species. Biochem Syst Ecol. 1998;26:647–653.
  • Bumrungpert A, Kalpravidh RW, Suksamrarn S, et al. Bioaccessibility, biotransformation, and transport of α-mangostin from Garcinia mangostana (Mangosteen) using simulated digestion and Caco-2 human intestinal cells. Mol Nutr Food Res. 2009;53:S54–S61.
  • Dmitriev AP. Signal molecules for plant defense responses to biotic stress. Signal molecules for plant defense responses to biotic stress. Russ J Plant Physiol. 2003;50(3):417–425.
  • Franklin G, Conceição LFR, Kombrink E, et al. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry. 2009;70:60–68.
  • Krstić-Milošević D, Janković T, Uzelac B, et al. Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tiss Organ Cult. 2017;130:631–640.
  • Farag MA, Huhman DV, Dixon RA, et al. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 2008;146:387–402.
  • Boroduske A, Nakurte I, Tomsone S, et al. In vitro culture type and elicitation affects secoiridoid and xanthone LC–ESI–TOF MS profile and production in Centaurium erythraea. Plant Cell Tiss Organ Cult. 2016;126:567–571.
  • Beerhues L, Berger U. Differential accumulation of xanthones in methyl-jasmonate- and yeast-extract-treated cell cultures of Centaurium erythraea and Centaurium littorale. Planta. 1995;197:608–612.
  • Beerhues L, Gaid M, Hänsch R, et al. Benzophenone synthase and chalcone synthase accumulate in the mesophyll of Hypericum perforatum leaves at different developmental stages. Front Plant Sci. 2016;7:921.
  • El-Awaad I, Bocola M, Beuerle T, et al. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nat Commun. 2016;7. Article number: 11472.
  • Gaid MM, Sircar D, Muller A, et al. Cinnamate: CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures. Plant Physiol. 2012;160:1267–1280.
  • Kumar N, Gulati A, Bhattacharya A. L-Glutamine and l-glutamic acid facilitate successful agrobacterium infection of recalcitrant tea cultivars. Appl Biochem Biotechnol. 2013;170:1649–1664.
  • Franklin G, Conceição LFR, Kombrink E, et al. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta. 2008;227:1401–1408.
  • Hou W, Shakya P, Franklin G. A perspective on Hypericum perforatum genetic transformation. Front Plant Sci. 2016;7:879.
  • Franklin G, Oliveira M, Dias A. Production of transgenic Hypericum perforatum plants via particle bombardment-mediated transformation of novel organogenic cell suspension cultures. Plant Sci. 2007;172:1193–1203.
  • Ryu CM, Uppalapati SR, Tang Y, et al. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol. 2008;146:703–715.
  • Yeom SI, Seo E, Oh SK, et al. A common plant cell-wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. Plant J. 2012;69:755–768.
  • Hassanein A, Hamama L, Loridon K, et al. Direct gene transfer study and transgenic plant regeneration after electroporation into mesophyll protoplasts of Pelargonium x hortorum, “Panaché Sud. Plant Cell Rep. 2009;28:1521–1530.
  • Lenth RV. Experiments: planning, analysis, and parameter design optimization. J Am Stat Assoc. 2002;97:654–654.
  • Bezerra MA, Santelli RE, Oliveira EP, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76:965–977.
  • Uozumi N, Yoshino T, Shiotani S, et al. Application of image analysis with neural network for plant somatic embryo culture. J Ferment Bioeng. 1993;76:505–509.
  • Prakash O, Mehrotra S, Krishna A, et al. A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. J Theor Biol. 2010;265:579–585.
  • Goswami M, Akhtar S, Osama K. Strategies for monitoring and modeling the growth of hairy root cultures: an in silico perspective. In: Srivastava V, Mehrotra S, Mishra S, editors. Hairy roots. Singapore: Springer; 2013. p. 311–327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.