526
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives

& ORCID Icon
Pages 787-803 | Received 01 Sep 2019, Accepted 19 Apr 2020, Published online: 19 May 2020

References

  • Abolhasan R, Mehdizadeh A, Rashidi MR, et al. Application of hairpin DNA-based biosensors with various signal amplification strategies in clinical diagnosis. Biosens Bioelectron. 2019;129:164–174.
  • Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–552.
  • McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol. 2015;12(12):711–717.
  • Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34(1):7–25.
  • Chamorro-Garcia A, Merkoçi A. Nanobiosensors in diagnostics. Nanobiomedicine (Rij. 2016;3:184954351666357.
  • Sharifi M, Avadi MR, Attar F, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron. 2019;126:773–784.
  • Vikrant K, Bhardwaj N, Bhardwaj SK, et al. Nanomaterials as efficient platforms for sensing DNA. Biomaterials. 2019;214:119215.
  • Kim YS, Raston NH, Gu MB. Aptamer-based nanobiosensors. Biosens Bioelectron. 2016;76:2–19.
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545.
  • Tian L, Weizmann Y. Real-time detection of telomerase activity using the exponential isothermal amplification of telomere repeat assay. J Am Chem Soc. 2013;135(5):1661–1664.
  • Bi S, Cui Y, Dong Y, et al. Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell. Biosens Bioelectron. 2014;53:207–213.
  • Bi S, Ye J, Dong Y, et al. Target-triggered cascade recycling amplification for label-free detection of microRNA and molecular logic operations. Chem Commun. 2016;52(2):402–405.
  • Asal M, Özen Ö, Şahinler M, et al. An overview of biomolecules, immobilization methods and support materials of biosensors. Sensor Review. 2019;39(3):377–386.
  • Vigneshvar S, Sudhakumari CC, Senthilkumaran B, et al. Recent advances in biosensor technology for potential applications - An overview. Front Bioeng Biotechnol. 2016;4:11.
  • Yoo SM, Kang T, Kim B, et al. Detection of single nucleotide polymorphisms by a gold nanowire-on-film SERS sensor coupled with S1 nuclease treatment. Chem Eur J. 2011;17(31):8657–8662.
  • Yoo SM, Kim DM, Lee SY. Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides. BioChip J. 2015;9(2):156–163.
  • Bao B, Zhu J, Gong L, et al. Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Adv. 2017;7(6):3528–3533.
  • Wang J, Wang X, Wu S, et al. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples. Biosens Bioelectron. 2017;87:984–990.
  • Chen X, Lin C, Chen Y, et al. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise. Biosens Bioelectron. 2016;77:486–490.
  • Li H, Wang S, Wu Z, et al. New function of exonuclease and highly sensitive label-free colorimetric DNA detection. Biosens Bioelectron. 2016;77:879–885.
  • Chen HG, Ren W, Jia J, et al. Fluorometric detection of mutant DNA oligonucleotide based on toehold strand displacement-driving target recycling strategy and exonuclease III-assisted suppression. Biosens Bioelectron. 2016;77:40–45.
  • Zou P, Liu Y, Wang H, et al. G-quadruplex DNAzyme-based chemiluminescence biosensing platform based on dual signal amplification for label-free and sensitive detection of protein. Biosens Bioelectron. 2016;79:29–33.
  • Wu X, Chen J, Zhao JX. Ultrasensitive detection of 3'-5' exonuclease enzymatic activity using molecular beacons. Analyst. 2014;139(5):1081–1087.
  • Xiong E, Yan X, Zhang X, et al. Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive electrochemical detection of nucleic acids. Biosens Bioelectron. 2017;87:732–736.
  • Feng Q, Zhao X, Guo Y, et al. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Biosens Bioelectron. 2018;108:97–102.
  • Ren W, Zhang Y, Chen HG, et al. Ultrasensitive label-free resonance Rayleigh scattering aptasensor for Hg(2+) Using Hg(2+)-triggered exonuclease III-assisted target recycling and growth of G-wires for signal amplification. Anal Chem. 2016;88(2):1385–1390.
  • Liu Q, Li L, Zhao Y, et al. Colorimetric detection of DNA at the nanomolar level based on enzyme-induced gold nanoparticle de-aggregation. Mikrochim Acta. 2018;185(6):301.
  • Xu L, Shen X, Li B, et al. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Anal Chim Acta. 2017;980:58–64.
  • Zhang J, Huang J, He F. The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on exonuclease III-assisted cyclic signal amplification. Biosens Bioelectron. 2019;138:111322.
  • Xu H, Wu D, Li CQ, et al. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron. 2017;90:314–320.
  • Ou S, Xu T, Liu X, et al. Rapid and ultrasensitive detection of microRNA based on strand displacement amplification-mediated entropy-driven circuit reaction. Sens Actuators B-Chem. 2018;255:3057–3063.
  • Liu HY, Tian T, Zhang YH, et al. Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification. Biosens Bioelectron. 2017;89:710–714.
  • Liu M, Ma F, Zhang Q, et al. Label-free and ultrasensitive detection of polynucleotide kinase activity at the single-cell level. Chem Commun. 2018;54(13):1583–1586.
  • Cheng R, Tao M, Shi Z, et al. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification. Biosens Bioelectron. 2015;73:138–145.
  • Xu H, Xue C, Zhang R, et al. Exponential rolling circle amplification and its sensing application for highly sensitive DNA detection of tumor suppressor gene. Sens Actuators B-Chem. 2017;243:1240–1247.
  • Yin HS, Li BC, Zhou YL, et al. Signal-on fluorescence biosensor for microRNA-21 detection based on DNA strand displacement reaction and Mg2+-dependent DNAzyme cleavage. Biosens Bioelectron. 2017;96:106–112.
  • Yue S, Zhao T, Bi S, et al. Programmable strand displacement-based magnetic separation for simultaneous amplified detection of multiplex microRNAs by chemiluminescence imaging array. Biosens Bioelectron. 2017;98:234–239.
  • Cao J, Yao Y, Fan K, et al. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. Sci Adv. 2018;4(11):eaau4602.
  • Wu D, Xu H, Shi H, et al. A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon. Anal Chim Acta. 2017;957:55–62.
  • Xu J, Qian J, Li H, et al. Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids. Biosens Bioelectron. 2016;75:41–47.
  • Yan YR, Shen B, Wang H, et al. A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation. Analyst. 2015;140(16):5469–5474.
  • Zheng XJ, Niu L, Wei D, et al. Label-free detection of microRNA based on coupling multiple isothermal amplification techniques. Sci Rep. 2016;6(1):35982.
  • Wang K, Fan D, Liu Y, et al. Cascaded multiple amplification strategy for ultrasensitive detection of HIV/HCV virus DNA. Biosens Bioelectron. 2017;87:116–121.
  • Chen J, Zhou XQ, Ma YJ, et al. Asymmetric exponential amplification reaction on a toehold/biotin featured template: an ultrasensitive and specific strategy for isothermal microRNAs analysis. Nucleic Acids Res. 2016;44(15):e130–19.
  • Zhang DY, Turberfield AJ, Yurke B, et al. Engineering entropy-driven reactions and networks catalyzed by DNA. Science. 2007;318(5853):1121–1125.
  • Lv YF, Cui L, Peng RZ, et al. Entropy beacon: a hairpin-free DNA amplification strategy for efficient detection of nucleic acids. Anal Chem. 2015;87(23):11714–11720.
  • Shi K, Dou BT, Yang CY, et al. DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise. Anal Chem. 2015;87(16):8578–8583.
  • He XW, Zeng T, Li Z, et al. Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly. Angew Chem Int Ed. 2016;55(9):3073–3076.
  • Liu SF, Fang L, Tian YS, et al. Label-free, non-enzymatic and ultrasensitive electrochemical nucleic acid biosensing by tandem DNA-fueled target recycling and hybridization chain reaction. Sens Actuators B-Chem. 2017;244:450–457.
  • Zhang DY, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc. 2009;131(47):17303–17314.
  • Genot AJ, Zhang DY, Bath J, et al. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J Am Chem Soc. 2011;133(7):2177–2182.
  • Wang M, Zhou Y, Yin H, et al. Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction. Biosens Bioelectron. 2018;107:34–39.
  • Yoo SM, Kang T, Kang H, et al. Combining a nanowire SERRS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. Small. 2011;7(23):3371–3376.
  • Luo C, Tang H, Cheng W, et al. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification. Biosens Bioelectron. 2013;48:132–137.
  • Pei Q, Song X, Liu S, et al. A facile signal-on electrochemical DNA sensing platform for ultrasensitive detection of pathogenic bacteria based on Exo III-assisted autonomous multiple-cycle amplification. Analyst. 2019;144(9):3023–3029.
  • Pan J, Li Q, Zhou D, et al. Label-free and highly sensitive fluorescence detection of lead(ii) based on DNAzyme and exonuclease III-assisted cascade signal amplification. New J Chem. 2019;43(15):5857–5862.
  • Wang K, Zhai FH, He MQ, et al. A simple enzyme-assisted cascade amplification strategy for ultrasensitive and label-free detection of DNA. Anal Bioanal Chem. 2019;411(19):4569–4576.
  • Miao P, Han K, Wang B, et al. Electrochemical detection of aqueous Ag + based on Ag+-assisted ligation reaction. Sci Rep. 2015;5(1):9161.
  • Jeong J, Kim H, Lee DJ, et al. RCA-based biosensor for electrical and colorimetric detection of pathogen DNA. Nanoscale Res Lett. 2016;11(1):242.
  • Wu J, de Paz A, Zamft BM, et al. DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Sci Rep. 2017;7(1):4756.
  • Yan J, Beattie TR, Rojas AL, et al. Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun. 2017;8(1):15075.
  • Wang Y, Prosen DE, Mei L, et al. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res. 2004;32(3):1197–1207.
  • Sirin S, Pearlman DA, Sherman W. Physics-based enzyme design: predicting binding affinity and catalytic activity. Proteins. 2014;82(12):3397–3409.
  • Barrozo A, Borstnar R, Marloie G, et al. Computational protein engineering: bridging the gap between rational design and laboratory evolution. IJMS. 2012;13(12):12428–12460.
  • Mailloux S, Gerasimova YV, Guz N, et al. Bridging the two worlds: A universal interface between enzymatic and DNA computing systems. Angew Chem Int Ed. 2015;54(22):6562–6566.
  • Katz E, Poghossian A, Schöning MJ. Enzyme-based logic gates and circuits-analytical applications and interfacing with electronics. Anal Bioanal Chem. 2017;409(1):81–94.
  • Arata H, Komatsu H, Han A, et al. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization. Analyst. 2012;137(14):3234–3237.
  • Liu W, Zhu M, Liu H, et al. Invading stacking primer: a trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants. Biosens Bioelectron. 2016;81:309–316.
  • Wang L, Han Y, Xiao S, et al. Reverse strand-displacement amplification strategy for rapid detection of p53 gene. Talanta. 2018;187:365–369.
  • Srinivas N, Ouldridge TE, Šulc P, et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 2013;41(22):10641–10658.
  • Yang C, Dou B, Shi K, et al. Multiplexed and amplified electronic sensor for the detection of microRNAs from cancer cells. Anal Chem. 2014;86(23):11913–11918.
  • Zhang Y, Wang LX, Luo F, et al. An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. Chem Commun. 2017;53(20):2910–2913.
  • Wang H-Q, Liu W-Y, Wu Z, et al. Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection. Anal Chem. 2011;83(6):1883–1889.
  • Tan E, Wong J, Nguyen D, et al. Isothermal DNA amplification coupled with DNA nanosphere-based colorimetric detection. Anal Chem. 2005;77(24):7984–7992.
  • Weizmann Y, Beissenhirtz MK, Cheglakov Z, et al. A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed. 2006;45(44):7384–7388.
  • Ding C, Li X, Ge Y, et al. Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Anal Chem. 2010;82(7):2850–2855.
  • Yang L, Fung CW, Cho EJ, et al. Real-time rolling circle amplification for protein detection. Anal Chem. 2007;79(9):3320–3329.
  • Zhang YP, Cui YX, Li XY, et al. A modified exponential amplification reaction (EXPAR) with an improved signal-to-noise ratio for ultrasensitive detection of polynucleotide kinase. Chem Commun. 2019;55(53):7611–7614.
  • Jia HX, Li ZP, Liu CH, et al. Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem Int Ed. 2010;49(32):5498–5501.
  • Huang M, Zhou X, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90(3):2193–2200.
  • Reid MS, Le XC, Zhang H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: An EXPAR example. Angew Chem Int Ed. 2018;57(37):11856–11866.
  • Xu Y, Wang Y, Liu S, et al. Ultrasensitive and rapid detection of miRNA with three-way junction structure-based trigger-assisted exponential enzymatic amplification. Biosens Bioelectron. 2016;81:236–241.
  • Esteban-Fernandez de Avila B, Araque E, Campuzano S, et al. Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal Chem. 2015;87(4):2290–2298.
  • Li X, Li DX, Zhou WJ, et al. A microRNA-activated molecular machine for non-enzymatic target recycling amplification detection of microRNA from cancer cells. Chem Commun. 2015;51(55):11084–11087.
  • Deng HM, Ren YQ, Shen W, et al. An ultrasensitive homogeneous chemiluminescent assay for microRNAs. Chem Commun. 2013;49(82):9401–9403.
  • Persano S, Valentini P, Kim JH, et al. Colorimetric detection of human papilloma virus by double isothermal amplification. Chem Commun. 2013;49(90):10605–10607.
  • Hong C, Kim DM, Baek A, et al. Fluorescence-based detection of single-nucleotide changes in RNA using graphene oxide and DNAzyme. Chem Commun. 2015;51(26):5641–5644.
  • Zhu DB, Zhang L, Ma WG, et al. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform. Biosens Bioelectron. 2015;65:152–158.
  • Shi M, Chen J, Huang Y, et al. A multicolor nano-immunosensor for the detection of multiple targets. RSC Adv. 2013;3(33):13884–13890.
  • Qiang WB, Wang X, Li W, et al. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with exonuclease III-assisted target recycling amplification. Biosens Bioelectron. 2015;71:143–149.
  • Torabi SF, Lu Y. Functional DNA nanomaterials for sensing and imaging in living cells. Curr Opin Chem Biol. 2014;28:88–95.
  • Wei Y, Zhang J, Wang X, et al. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2015;65:16–22.
  • Wang P, Han P, Dong L, et al. Direct potential resolution and simultaneous detection of cytosine and 5-methylcytosine based on the construction of polypyrrole functionalized graphene nanowall interface. Electrochem Commun. 2015;61:36–39.
  • Cai SX, Chen M, Liu MM, et al. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker. Biosens Bioelectron. 2016;85:184–189.
  • Ji YH, Zhang L, Zhu LY, et al. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein. Biosens Bioelectron. 2017;96:201–205.
  • Jung C, Allen PB, Ellington AD. A simple, cleated DNA walker that hangs on to surfaces. ACS Nano. 2017;11(8):8047–8054.
  • Pu QL, Li JL, Qiu JH, et al. Universal ratiometric electrochemical biosensing platform based on mesoporous platinum nanocomposite and nicking endonuclease assisted DNA walking strategy. Biosens Bioelectron. 2017;94:719–727.
  • Liu C, Hu Y, Pan Q, et al. A microRNA-triggered self-powered DNAzyme walker operating in living cells. Biosens. Bioelectron. 2019;136:31–37.
  • Yang L, Zhang Y, Li R, et al. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Biosens Bioelectron. 2015;70:268–274.
  • Yang L, Tao Y, Yue G, et al. Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem. 2016;88(10):5097–5103.
  • Liao H, Zhou Y, Chai Y, et al. An ultrasensitive electrochemiluminescence biosensor for detection of MicroRNA by in-situ electrochemically generated copper nanoclusters as luminophore and TiO2 as coreaction accelerator. Biosens Bioelectron. 2018;114:10–14.
  • Xu H, Jiang Y, Liu D, et al. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene. Anal Chim Acta. 2018;1011:86–93.
  • Deng RJ, Tang LH, Tian Q, et al. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew Chem Int Ed. 2014;53(9):2389–2393.
  • Li H, Ren J, Liu Y, et al. Application of DNA machine in amplified DNA detection. Chem Commun. 2014;50(6):704–706.
  • Wang K, Ren J, Fan D, et al. Integration of graphene oxide and DNA as a universal platform for multiple arithmetic logic units. Chem Commun. 2014;50(92):14390–14393.
  • Li J, Jia Y, Zheng J, et al. Aptamer degradation inhibition combined with DNAzyme cascade-based signal amplification for colorimetric detection of proteins. Chem Commun. 2013;49(55):6137–6139.
  • Zhang S, Wang K, Huang C, et al. Reconfigurable and resettable arithmetic logic units based on magnetic beads and DNA. Nanoscale. 2015;7(48):20749–20756.
  • Zhou W, Gong X, Xiang Y, et al. Quadratic recycling amplification for label-free and sensitive visual detection of HIV DNA. Biosens Bioelectron. 2014;55:220–224.
  • Shen ZF, Li F, Jiang YF, et al. Palindromic molecule beacon-based cascade amplification for colorimetric detection of cancer genes. Anal Chem. 2018;90(5):3335–3340.
  • Yang ZH, Zhuo Y, Yuan R, et al. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron. 2015;69:321–327.
  • Zhang H, Zhao Z, Lei Z, et al. Sensitive detection of polynucleotide kinase activity by paper-based fluorescence assay with λ exonuclease assistance. Anal Chem. 2016;88(23):11358–11363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.