445
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Elicitins as molecular weapons against pathogens: consolidated biotechnological strategy for enhancing plant growth

, , , , , , & ORCID Icon show all
Pages 821-832 | Received 20 Jan 2019, Accepted 20 May 2020, Published online: 16 Jun 2020

References

  • Liu Z, Shi L, Yang S, et al. Functional and promoter analysis of CHIIV3, a chitinase of pepper plant, in response to phytophthora capsici infection. Int J Mol Sci. 2017;18(8):1661.
  • Cheng W, Xiao Z, Cai H, et al. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. Mol Plant Pathol. 2017;18(8):1089–1100.
  • Ashraf MF, Yang S, Ruijie W, et al. Capsicum annuum HsfB2a positively regulates the response to Ralstonia solanacearum infection or high temperature and high humidity forming transcriptional cascade with CaWRKY6 and CaWRKY40. Plant Cell Physiol. 2018;59:2608–2623.
  • Ifnan Khan M, Zhang Y, Liu Z, et al. CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40. Int J Mol Sci. 2018;19(5):1403.
  • Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One. 2011;6(1):e16608.
  • Postel S, Kemmerling B. Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol. 2009;20(9):1025–1031.
  • Jiang RH, Dawe AL, Weide R, et al. Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol Genet Genomics. 2005;273(1):20–32.
  • Panabières F, Amselem J, Galiana E, et al. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet Biol. 2005;42(7):611–623.
  • Ricci P, Trentin F, Bonnet P, et al. Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates of Phytophthora parasitica. Plant Pathol. 1992;41(3):298–307.
  • Ricci P, Bonnet P, Huet JC, et al. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem. 1989;183(3):555–563.
  • Elliott C, Hendrie MR, Knights B. The sterol requirement of Phytophthora cactorum. Microbiology. 1966;42(3):425–435.
  • Vauthrin S, Mikes V, Milat M-L, et al. Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochim Biophys Acta. 1999;1419(2):335–342.
  • Ivanova DG, Singh BR. Nondestructive FTIR monitoring of leaf senescence and elicitin-induced changes in plant leaves . Biopolymers. 2003;72(2):79–85.
  • Manter DK, Kelsey RG, Karchesy JJ. Antimicrobial activity of extracts and select compounds in the heartwood of seven western conifers toward Phytophthora ramorum. In: Frankel SJ, Kliejunas JT, Palmieri KM, tech. coords. Proceedings of the Sudden Oak Death Third Science Symposium. Gen. Tech. Rep. PSW-GTR-214. Albany (CA): US Department of Agriculture, Forest Service, Pacific Southwest Research Station; 2008. p. 375–378.
  • Ponchet M, Panabieres F, Milat M-L, et al. Are elicitins cryptograms in plant-oomycete communications? Cell Mol Life Sci. 1999;56(11–12):1020–1047.
  • Derevnina L, Dagdas YF, De la Concepcion JC, et al. Nine things to know about elicitins. New Phytol. 2016;212(4):888–895.
  • Vleeshouwers VG, van Dooijeweert W, Govers F, et al. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta. 2000;210(6):853–864.
  • Uhlíková H, Obořil M, Klempová J, et al. Elicitin-induced distal systemic resistance in plants is mediated through the Protein-Protein Interactions Influenced by Selected Lysine Residues. Front Plant Sci. 2016;7:59.
  • Svozilová Z, Kašparovský T, Skládal P, et al. Interaction of cryptogein with its binding sites in tobacco plasma membrane studied using the piezoelectric biosensor. Anal Biochem. 2009;390(2):115–120.
  • Kawamura Y, Hase S, Takenaka S, et al. INF1 elicitin activates jasmonic acid‐and ethylene‐mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. J Phytopathol. 2009;157(5):287–297.
  • Ioos R, Panabières F, Andrieux A, et al. Distribution and expression of elicitin genes in the interspecific hybrid oomycete Phytophthora alni. Appl Environ Microbiol. 2007;73(17):5587–5597.
  • Boissy G, de La Fortelle E, Kahn R, et al. Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins. Structure. 1996;4(12):1429–1439.
  • Rodrigues ML, Archer M, Martel P, et al. Crystal structures of the free and sterol-bound forms of beta-cinnamomin. Biochim Biophys Acta. 2006;1764(1):110–121.
  • Du J, Verzaux E, Chaparro-Garcia A, et al. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat Plants. 2015;1(4):15034.
  • Bourque S, Ponchet M, Binet M-N, et al. Comparison of binding properties and early biological effects of elicitins in tobacco cells. Plant Physiol. 1998;118(4):1317–1326.
  • van't Slot KAE, Gierlich A, Knogge W. A single binding site mediates resistance- and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis. Plant Physiol. 2007;144(3):1654–1666.
  • Kanzaki H, Saitoh H, Takahashi Y, et al. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta. 2008;228(6):977–987.
  • Dokládal L, Oboril M, Stejskal K, et al. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. J Exp Bot. 2012;63(5):2203–2215.
  • Pernollet J, Sallantin M, Salle-Tourne M, et al. Elicitin isoforms from seven Phytophthora species: comparison of their physico-chemical properties and toxicity to tobacco and other plant species. Physiol Mol Plant Pathol. 1993;42(1):53–67.
  • Plešková V, Kašparovský T, Obořil M, et al. Elicitin-membrane interaction is driven by a positive charge on the protein surface: role of Lys13 residue in lipids loading and resistance induction. Plant Physiol Biochem. 2011;49(3):321–328.
  • Qutob D, Huitema E, Gijzen M, et al. Variation in structure and activity among elicitins from Phytophthora sojae. Mol Plant Pathol. 2003;4(2):119–124.
  • Zipfel C, Robatzek S. Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiol. 2010;154(2):551–554.
  • Nars A, Lafitte C, Chabaud M, et al. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. PLoS One. 2013;8(9):e75039.
  • Albert I, Böhm H, Albert M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat Plants. 2015;1(10):15140.
  • Oome S, Raaymakers TM, Cabral A, et al. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A. 2014;111(47):16955–16960.
  • Miya A, Albert P, Shinya T, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(49):19613–19618.
  • Robinson SM, Bostock RM. β-glucans and eicosapolyenoic acids as MAMPs in plant–oomycete interactions: past and present. Front Plant Sci. 2015;5:797.
  • Orsomando G, Lorenzi M, Raffaelli N, et al. Phytotoxic protein PcF: purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J Biol Chem. 2001;276(24):21578–21584.
  • Ma Z, Song T, Zhu L, et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell. 2015;27(7):2057–2072.
  • Raaymakers TM, Van den Ackerveken G. Extracellular recognition of oomycetes during biotrophic infection of plants. Front Plant Sci. 2016;7:906.
  • Bostock RM, Kuc JA, Laine RA. Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science. 1981;212(4490):67–69.
  • Savchenko T, Walley JW, Chehab EW, et al. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell. 2010;22(10):3193–3205.
  • Nürnberger T, Nennstiel D, Jabs T, et al. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994;78(3):449–460.
  • Sharp JK, Valent B, Albersheim P. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J Biol Chem. 1984;259(18):11312–11320.
  • Chang YH, Yan HZ, Liou RF. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol Plant Pathol. 2015;16(2):123–136.
  • Böhm H, Albert I, Oome S, et al. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog. 2014;10(11):e1004491.
  • Gaulin E, Dramé N, Lafitte C, et al. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell. 2006;18(7):1766–1777.
  • Séjalon N, Dargent R, Villalba F, et al. Characterization of a cell-surface antigen isolated from the plant pathogen Phytophthora parasitica var. nicotianae. Can J Bot. 1995;73(S1):1104–1108.
  • Brunner F, Rosahl S, Lee J, et al. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. Embo J. 2002;21(24):6681–6688.
  • Veit S, Wörle JM, Nürnberger T, et al. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol. 2001;127(3):832–841.
  • Bos JI, Armstrong MR, Gilroy EM, et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci U S A. 2010;107(21):9909–9914.
  • Chaparro-Garcia A, Schwizer S, Sklenar J, et al. Phytophthora infestans RXLR-WY effector AVR3a associates with a Dynamin-Related Protein involved in endocytosis of a plant pattern recognition receptor. BioRxiv. 2014:012963.
  • King SR, McLellan H, Boevink PC, et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell. 2014;26(3):1345–1359.
  • Bozkurt TO, Schornack S, Win J, et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A. 2011;108(51):20832–20837.
  • McLellan H, Boevink PC, Armstrong MR, et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog. 2013;9(10):e1003670.
  • Caillaud M-C, Asai S, Rallapalli G, et al. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 2013;11(12):e1001732.
  • Zhang M, Li Q, Liu T, et al. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases. Plant Physiol. 2015;167(1):164–175.
  • Qiao Y, Liu L, Xiong Q, et al. Oomycete pathogens encode RNA silencing suppressors. Nat Genet. 2013;45(3):330–333.
  • Qiao Y, Shi J, Zhai Y, et al. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proc Natl Acad Sci U S A. 2015;112(18):5850–5855.
  • Liu T, Song T, Zhang X, et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat Commun. 2014;5:4686.
  • Adachi H, Nakano T, Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell. 2015;27(9):2645–2663.
  • Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell. 2011;23(1):4–15.
  • Jiang RH, Tyler BM, Whisson SC, et al. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol Biol Evol. 2005;23(2):338–351.
  • Sonnhammer EL, Eddy SR, Birney E, et al. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;26(1):320–322.
  • Blein J-P, Coutos-Thévenot P, Marion D, et al. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci. 2002;7(7):293–296.
  • Nespoulous C, Gaudemer O, Huet J-C, et al. Characterization of elicitin-like phospholipases isolated from Phytophthora capsici culture filtrate . FEBS Lett. 1999;452(3):400–406.
  • Heese A, Hann DR, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A. 2007;104(29):12217–12222.
  • Julenius K, Mølgaard A, Gupta R, et al. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15(2):153–164.
  • Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379.
  • Eisenhaber B, Wildpaner M, Schultz CJ, et al. Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice . Plant Physiol. 2003;133(4):1691–1701.
  • Stong RA, Kolodny E, Kelsey RG, et al. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation. J Chem Ecol. 2013;39(6):733–743.
  • Osman H, Mikes V, Milat M-L, et al. Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Lett. 2001;489(1):55–58.
  • Nes WD, Stafford AE. Evidence for metabolic and functional discrimination of sterols by Phytophthora cactorum. Proc Natl Acad Sci Usa. 1983;80(11):3227–3231.
  • Cordelier S, De Ruffray P, Fritig B, et al. Biological and molecular comparison between localized and systemic acquired resistance induced in tobacco by a Phytophthora megasperma glycoprotein elicitin. Plant Mol Biol. 2003;51(1):109–118.
  • Keller H, Blein J-P, Bonnet P, et al. Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol. 1996;110(2):365–376.
  • Kamoun S, van West P, de Jong AJ, et al. A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Mol Plant Microbe Interact. 1997;10(1):13–20.
  • Huitema E, Vleeshouwers VG, Francis DM, et al. Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol. 2003;4(6):487–500.
  • Tyler BM. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol. 2002;40(1):137–167.
  • Krzymowska M, Konopka ‐Postupolska D, Sobczak M, et al. Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. Plant J. 2007;50(2):253–264.
  • Mur LA, Kenton P, Lloyd AJ, et al. The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot. 2008;59(3):501–520.
  • Peng K-C, Wang C-W, Wu C-H, et al. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Mol Plant Microbe Interact. 2015;28(8):913–926.
  • Yoshioka H, Numata N, Nakajima K, et al. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell. 2003;15(3):706–718.
  • Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14(6):691–699.
  • Simon ‐Plas F, Elmayan T, Blein JP. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J. 2002;31(2):137–147.
  • Ishihama N, Yamada R, Yoshioka M, et al. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell. 2011;23(3):1153–1170.
  • Hase S, Takahashi S, Takenaka S, et al. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathology. 2008;57(5):870–876.
  • Takenaka S, Nakamura Y, Kono T, et al. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol Plant Pathol. 2006;7(5):325–339.
  • Hammond-Kosack KE, Jones J. Resistance gene-dependent plant defense responses. Plant Cell. 1996;8(10):1773–1791.
  • Staskawicz BJ, Ausubel FM, Baker BJ, et al. Molecular genetics of plant disease resistance. Science. 1995;268(5211):661–667.
  • Liu ZQ, Liu YY, Shi LP, et al. SGT1 is required in PcINF1/SRC2-1 induced pepper defense response by interacting with SRC2-1. Sci Rep. 2016;6:21651.
  • Gilroy EM, Taylor RM, Hein I, et al. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 2011;190(3):653–666.
  • Lerksuthirat T, Lohnoo T, Inkomlue R, et al. The elicitin-like glycoprotein, ELI025, is secreted by the pathogenic oomycete Pythium insidiosum and evades host antibody responses. PloS One. 2015;10(3):e0118547.
  • Noman A, Liu Z, Yang S, et al. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog. 2018;118:336–346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.