434
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Oil crop genetic modification for producing added value lipids

, , , , , , , & show all
Pages 777-786 | Received 14 Apr 2019, Accepted 26 May 2020, Published online: 30 Jun 2020

References

  • Carlsson AS. Plant oils as feedstock alternatives to petroleum – a short survey of potential oil crop platforms. Biochimie. 2009;91(6):665–670.
  • Bersuker K, Olzmann JA. Establishing the lipid droplet proteome: mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1166–1177.
  • Chapman KD, Ohlrogge JB. Compartmentation of triacylglycerol accumulation in plants. J Biol Chem. 2012;287(4):2288–2294.
  • Bates PD, Stymne S, Ohlrogge JB. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 2013;16(3):358–364.
  • Basili M, Rossi MA. Brassica carinata-derived biodiesel production: economics, sustainability and policies. J Clean Prod. 2018;191:40–47.
  • Schillinger WF. Camelina: long-term cropping systems research in a dry Mediterranean climate. Field Crop Res. 2019;235:87–94.
  • Belayneh HD, Wehling RL, Cahoon E, et al. Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chem. 2018;242:139–146.
  • Costa E, Almeida MF, Alvim-Ferraz C, et al. The cycle of biodiesel production from Crambe abyssinica in Portugal. Ind Crop Prod. 2019;129:51–58.
  • Qi W, Lin F, Liu Y, et al. High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. BMC Plant Bio. 2016;16(1):139.
  • Liu M, Long H, Li W, et al. Boosting C16 fatty acid biosynthesis of Escherichia coli, yeast and tobacco by tung tree (Vernicia fordii Hemsl.) beta-hydroxyacyl-acyl carrier protein dehydratase gene. Ind Crop Prod. 2019;127:46–54.
  • Wu H, Li C, Li Z, et al. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Process Technol. 2018;174:88–94.
  • Agarwal S, Arya D, Khan S. Comparative fatty acid and trace elemental analysis identified the best raw material of jojoba (Simmondsia chinensis) for commercial applications. Ann Agric Sci. 2018;63(1):37–45.
  • Veljković VB, Biberdžić MO, Banković-Ilić IB, et al. Biodiesel production from corn oil: A review. Renew Sust Energ Rev. 2018;91:531–548.
  • Arumugam A, Ponnusami V. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew Energ. 2019;131:459–471.
  • Patel RL, Sankhavara CD. Biodiesel production from Karanja oil and its use in diesel engine: A review. Renew Sust Energ Rev. 2017;71:464–474.
  • Vanhercke T, Wood CC, Stymne S, et al. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol J. 2013;11(2):197–210.
  • Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: a comprehensive review. Biotechnol Adv. 2018;36(4):954–967.
  • Pommerrenig B, Popko J, Heilmann M, et al. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation. Plant J. 2013;73(3):392–404.
  • Hill LM, Morley-Smith ER, Rawsthorne S. Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol. 2003;131(1):228–236.
  • Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases. Arch Biochem Biophy. 2003;414(2):211–222.
  • Eastmond PJ, Rawsthorne S. Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryos. Plant Physiol. 2000;122(3):767–774.
  • Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995;7(7):957–970.
  • Haslam TM, Kunst L. Extending the story of very-long-chain fatty acid elongation. Plant Sci. 2013;210:93–107.
  • Abbadi A, Domergue F, Bauer J, et al. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell. 2004;16(10):2734–2748.
  • Seo J-H, Lee S-M, Lee J, et al. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. J Biotechnol. 2015;216:158–166.
  • Li X, Teitgen AM, Shirani A, et al. Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants. 2018;4(9):711–720.
  • Murata N, Tasaka Y. Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta - Lipids Lipid Metab. 1997;1348(1-2):10–16.
  • Kim HU, Li Y, Huang A. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell. 2005;17(4):1073–1089.
  • Carman GM, Han G-S. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31(12):694–699.
  • Liu Q, Siloto RMP, Lehner R, et al. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res. 2012;51(4):350–377.
  • Huang A. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 2018;176(3):1894–1918.
  • Vanhercke T, Dyer JM, Mullen RT, et al. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res. 2019;74:103–129.
  • Dahlqvist A, Stahl U, Lenman M, et al. Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA. 2000;97(12):6487–6492.
  • Wallis JG, Watts JL, Browse J. Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci. 2002;27(9):467–473.
  • Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res. 2012;53(2):215–226.
  • Lalas S, Gortzi O, Athanasiadis V, et al. Full characterisation of Crambe abyssinica Hochst. seed oil. J Am Oil Chem Soc. 2012;89(12):2253–2258.
  • Joubes J, Raffaele S, Bourdenx B, et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol. 2008;67(5):547–566.
  • Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(3):156–163.
  • Cahoon EB, Shockey JM, Dietrich CR, et al. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: Solving bottlenecks in fatty acid flux. Curr Opin Plant Biol. 2007;10(3):236–244.
  • Yang X, Zhang S, Li W. The performance of biodegradable tung oil coatings. Prog Org Coat. 2015;85:216–220.
  • Cahoon EB, Dietrich CR, Meyer K, et al. Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry. 2006;67(12):1166–1176.
  • Sperling P, Linscheid M, Stocker S, et al. In vivo desaturation of cis-delta 9-monounsaturated to cis-delta 9,12-diunsaturated alkenylether glycerolipids. J Biol Chem. 1993;268(36):26935–26940.
  • De Loo FJV, Broun P, Turner S, et al. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci Usa. 1995;92(15):6743–6747.
  • Rivarola M, Foster JT, Chan AP, et al. Castor bean organelle genome sequencing and worldwide genetic diversity analysis. Plos One. 2011;6(7):e21743.
  • Kumar S, Mangal M, Dhawan AK, et al. Biotechnological advances in jojoba [Simmondsia chinensis (Link) Schneider]: recent developments and prospects for further research. Plant Biotechnol Rep. 2012;6(2):97–106.
  • Mamode Cassim A, Gouguet P, Gronnier J, et al. Plant lipids: key players of plasma membrane organization and function. Prog Lipid Res. 2019;73:1–27.
  • Tumaney AW, Rajasekharan R. Synthesis of azidophospholipids and labeling of lysophosphatidylcholine acyltransferase from developing soybean cotyledons. Biochim Biophys Acta – Mol Cell Biol Lipids. 1999;1439(1):47–56.
  • Wu G, Wu Y, Xiao L, et al. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet. 2008;116(4):491–499.
  • Katavic V, Mietkiewska E, Barton DL, et al. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem. 2002;269(22):5625–5631.
  • Han J, Lühs W, Sonntag K, et al. Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Molr Bio. 2001;46(2):229–239.
  • Cheng J, Zhu L, Salentijn EMJ, et al. Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biol. 2013;13(1):146–146.
  • Cheng J, Salentijn EMJ, Huang B, et al. Detection of induced mutations in CaFAD2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica . Plant Biotechnol J. 2015;13(4):471–481.
  • Bocianowski J, Mikołajczyk K, Bartkowiak-Broda I. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. J Appl Genet. 2012;53(1):27–30.
  • Jadhav A, Katavic V, Marillia E-F, et al. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng. 2005;7(3):215–220.
  • Lassner M, Levering CK, Davies HM, et al. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2 Position of triacylglycerol in transgenic rapeseed oil. Plant Physiol. 1995;109(4):1389–1394.
  • Brough CL, Coventry JM, Christie WW, et al. Towards the genetic engineering of triacylglycerols of defined fatty acid composition: major changes in erucic acid content at the sn-2 position affected by the introduction of a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii into oil seed rape. Mol Breeding. 1996;2(2):133–142.
  • Nath UK, Wilmer J, Wallington E, et al. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Genet. 2009;118(4):765–773.
  • Li X, Van Loo EN, Gruber J, et al. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica . Plant Biotechnol J. 2012;10(7):862–870.
  • Guan R, Lager I, Li X, et al. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica. Plant Biotechnol J. 2014;12(2):193–203.
  • Guan R, Li X, Hofvander P, et al. RNAi targeting putative genes in phosphatidylcholine turnover results in significant change in fatty acid composition in Crambe abyssinica seed oil. Lipids. 2015;50(4):407–416.
  • Qi W, Tinnenbroek-Capel IEM, Salentijn EMJ, et al. Genetically engineering Crambe abyssinica – a potentially high‐value oil crop for salt land improvement. Land Degrad Dev. 2018;29(4):1096–1106.
  • Boutté Y. Lipids at the crossroad: shaping biological membranes heterogeneity defines trafficking pathways. PLoS Biol. 2018;16(2):e2005188.
  • Zhu LH, Krens FA, Smith MA, et al. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep. 2016;6(1):22181–22181.
  • Miklaszewska M, Banaś A. Biochemical characterization and substrate specificity of jojoba fatty acyl-CoA reductase and jojoba wax synthase. Plant Sci. 2016;249:84–92.
  • Rajangam AS, Gidda SK, Craddock C, et al. Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated Jojoba seeds. Plant Physiol. 2013;161(1):72–80.
  • Price AM, Doner NM, Gidda SK, et al. Mouse Fat-Specific Protein 27 (FSP27) expressed in plant cells localizes to lipid droplets and promotes lipid droplet accumulation and fusion. Biochimie. 2020;169:41–53.
  • Heilmann M, Iven T, Ahmann K, et al. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes. J Lipid Res. 2012;53(10):2153–2161.
  • Tsai C-H, Zienkiewicz K, Amstutz CL, et al. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. Plant J. 2015;83(4):650–660.
  • Patel MK, Pandey S, Brahmbhatt HR, et al. Lipid content and fatty acid profile of selected halophytic plants reveal a promising source of renewable energy. Biomass Bioenerg. 2019;124:25–32.
  • Vanhercke T, Belide S, Taylor MC, et al. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. Plant Biotechnol J. 2019;17(1):220–232.
  • Mrízová K, Holasková E, Öz MT, et al. Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnol Adv. 2014;32(1):137–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.