894
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Fungi in mangrove ecosystems and their potential applications

, , , &
Pages 852-864 | Received 04 Nov 2019, Accepted 28 May 2020, Published online: 07 Jul 2020

References

  • Alappatt JP. Structure and species diversity of mangrove ecosystem. In: Sivaperuman C, Velmurugan A, Singh A, Jaisankar I, editors. Biodiversity and climate change adaptation in tropical islands. London: Elsevier; 2018. p. 127–144.
  • Li MS, Lee SY. Mangroves of China: a brief review. For Ecol Manag. 1997;96(3):241–259.
  • Rajamani T, Suryanarayanan TS, Murali TS, Thirunavukkarasu N. Distribution and diversity of foliar endophytic fungi in the mangroves of Andaman Islands, India. Fung Ecol. 2018;36:109–116.
  • Filipa Simoes M, Antunes A, Cristiane A, et al. Soil and rhizosphere associated fungi in gray mangroves (Avicennia marina) from the red sea – a metagenomic approach. Genom Proteom Bioinf. 2015;13(5):310–320.
  • Preedanon S, Klaysuban A, Suetrong S, et al. Helicascus mangrovei sp. nov., a new intertidal mangrove fungus from Thailand. Mycoscience. 2017;58(3):174–180.
  • Arfi Y, Marchand C, Wartel M, et al. Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fung Ecol. 2012;5(2):282–285.
  • Ancheeva E, Daletos G, Proksch P. Lead compounds from mangrove-associated microorganisms. Mar Drugs. 2018;16(9):319–350.
  • Ma Y, Wang GY, Liu GL, et al. Overproduction of poly(β-malic acid) (PMA) from glucose by a novel Aureobasidium sp. P6 strain isolated from mangrove system. Appl Microbiol Biotechnol. 2013;97(20):8931–8939.
  • Ma ZC, Fu WJ, Liu GL, et al. High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl Microbiol Biotechnol. 2014;98(11):4865–4873.
  • Wang CL, Li Y, Xin FH, et al. Evaluation of single cell oil from Aureobasidium pullulans var. melanogenum P10 isolated from mangrove ecosystems for biodiesel production. Proc Biochem. 2014;49(5):725–731.
  • Liu YY, Chi Z, Wang ZP, et al. Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Ind Microbiol Biotechnol. 2014;41(9):1329–1337.
  • Wang YK, Chi Z, Zhou HX, et al. Enhanced production of Ca2+-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microb Cell Fact. 2015;14:115.
  • Zhao SF, Jiang H, Chi Z, et al. Genome sequencing of Aureobasidium pullulans P25 and overexpression of a glucose oxidase gene for hyper-production of Ca2+-gluconic acid. Antonie Van Leeuwenhoek. 2019;112(5):669–678.
  • Chi ZM, Liu TT, Chi Z, et al. Occurrence and diversity of yeasts in the mangrove ecosystems in Fujian, Guangdong and Hainan Provinces of China. Indian J Microbiol. 2012;52(3):346–353.
  • Wang JH, Ma XX, Liu S, et al. Biodegradation of phenol and 4-chlorophenol by Candida tropicalis W1. Proc Environ Sci. 2012;16:299–303.
  • Kamat S, Gaikwad A, Kumar R, et al. Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate. J Appl Microbiol. 2013;115(6):1357–1367.
  • Buzdar MA, Chi Z, Wang Q, et al. Production, purification, and characterization of a novel killer toxin from Kluyveromyces siamensis against a pathogenic yeast in crab. Appl Microbiol Biotechnol. 2011;91(6):1571–1579.
  • Sun HY, Wang K, Chi Z, et al. Simultaneous production of single cell protein and killer toxin by Wickerhamomyces anomalus HN1-2 isolated from mangrove ecosystem. Proc Biochem. 2012;47(2):251–256.
  • Wang XH, Chi ZM, Yue LX, et al. A marine killer yeast against the pathogenic yeast strain in crab (Portunus trituberculatus) and an optimization of the toxin production. Microbiol Res. 2007;162(1):77–85.
  • de Araujo EV, Soares CAG, Hagler AN, et al. Ascomycetous yeast communities of marine invertebrates in a Southeast Brazilian mangrove ecosystem. Antonie Van Leeuwenhoek. 1995;68(2):91–99.
  • Kurzman CP, Fell JW. The yeasts: a taxonomic study. 4th ed. Amsterdam: Elsevier; 2000. p. 919–924.
  • Pointing SB, Buswell JA, Jones EBG, et al. Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res. 1999;103(6):696–700.
  • Gupta N, DAS SJ. Phosphate solubilising fungi from mangroves of Bhitarkanika, Orissa. HAYATI J Biosci. 2008;15(2):90–92.
  • Chakraborty V, Sengupta S, Chaudhuri P, et al. Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology. Environ Technol Innov. 2018;10:335–344.
  • Das P, Mahanty S, Ganguli A, et al. Role of manglicolous fungi isolated from Indian Sunderban mangrove forest for the treatment of metal containing solution: batch and optimization using response surface methodology. Environ Technol Innov. 2019;13:166–178.
  • Ameen F, Moslem M, Hadi S, et al. Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J Biol Sci. 2016;23(2):211–218.
  • Wu YR, Luo ZH, Vrijmoed L. Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol. 2010;101(24):9666–9672.
  • Vicente VA, Orélis-Ribeiro R, Najafzadeh MJ, et al. Black yeast-like fungi associated with lethargic crab disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Vet Microbiol. 2012;158(1–2):109–122.
  • Roza D, Hatai K. Pathogenicity of fungi isolated from the larvae of mangrove crab, Scylla serrate, in Indonesia. Mycoscience. 1999;40(5):427–431.
  • Van Bogaert INA, De Maeseneire SL, Vandamme EJ. Extracellular polysaccharides produced by yeasts and yeast-like fungi. In: Satyanarayana T, Kunze G, editors. Yeast biotechnology: diversity and applications. Germany: ©Springer Science + Business Media B.V.; 2009. p. 651–671.
  • Sugumaran KR, Ponnusami V. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym. 2017;173:573–591.
  • Ma Z-C, Liu N-N, Chi Z, et al. Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol. 2015;17(4):511–522.
  • Chi ZM, Zhang T, Cao TS, et al. Biotechnological potential of inulin for bioprocesses. Bioresour Technol. 2011;102(6):4295–4303.
  • Xue SJ, Jiang H, Chen L, et al. Over-expression of Vitreoscilla hemoglobin (VHb) and flavohemoglobin (FHb) genes greatly enhances pullulan production. Int J Biol Macromol. 2019;132:701–709.
  • Wang QQ, Lu Y, Ren ZY, et al. CreA is directly involved in pullulan biosynthesis and regulation of Aureobasidium melanogenum P16. Curr Genet. 2017;63(3):471–485.
  • Duan X, Chi ZM, Wang L, et al. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym. 2008;73(4):587–593.
  • Rødkaer SV, Faergeman NJ. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res. 2014;14(5):683–696.
  • Prathyusha A, Sheela GM, Bramhachari PV. Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnol Rep. 2018;19:e00277.
  • Chen Y, Mao W, Tao H, et al. Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol. 2011;102(17):8179–8184.
  • da Silva AR, Tomotani EJ, Vitolo M. Invertase, glucose oxidase and catalase for converting sucrose to fructose and gluconic acid through batch and membrane-continuous reactors. Braz J Pharm Sci. 2011;47(2):399–407.
  • Canete-Rodrıguez AM, Santos-Duenas IM, Jimenez-Hornero JE. Gluconic acid: properties, production methods and applications – an excellent opportunity for agro-industrial by-products and waste bio-valorization. Proc Biochem. 2016;51:1891–1903.
  • Ma Y, Chi Z, Li YF, et al. Cloning, deletion, and overexpression of a glucose oxidase gene in Aureobasidium sp. P6 for Ca2+-gluconic acid overproduction. Ann Microbiol. 2018;68(12):871–879.
  • Chi Z, Liu GL, Liu CC, Chi ZM. Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol. 2016;100(9):3841–3851.
  • Fu WJ, Chi Z, Ma ZC, et al. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol. 2015;99(18):7481–7494.
  • Yu H, Liu B, Luo J, et al. Toward understanding the key enzymes involved in β-poly (l-malic acid) biosynthesis by Aureobasidium pullulans ipe-1. Eng Life Sci. 2018;18(6):379–386.
  • Kamat S, Khot M, Zinjarde S, et al. Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol. 2013;135:246–253.
  • Xin F-H, Zhang Y, Xue S-J, et al. Heavy oils (mainly alkanes) over-production from inulin by Aureobasidium melanogenum 9-1 and its transformant 88 carrying an inulinase gene. Renew Energy. 2017;105:561–568.
  • Xue SJ, Chi Z, Zhang Y, et al. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol. 2018;38(7):1049–1060.
  • Kamei I, Hirota Y, Mori T, et al. Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol. 2012;112:137–142.
  • Price NPJ, Manitchotpisit P, Vermillion KE, et al. Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res. 2013;370:24–32.
  • Garay LA, Sitepu IR, Cajka T, et al. Extracellular fungal polyol lipids: a new class of potential high value lipids. Biotechnol Adv. 2018;36(2):397–414.
  • Zhao SF, Liu GL, Hu Z, et al. Biosynthesis of some organic acids and lipids in industrially important microorganisms is promoted by pyruvate carboxylases. J Biosci. 2019;44(2):47.
  • Tang RR, Chi Z, Jiang H, et al. Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39. Proc Biochem. 2018;69:64–74.
  • Ling X, Guo J, Liu X, et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour Technol. 2015;184:139–147.
  • Patel I, Kracher D, Ma S, et al. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6. Biotechnol Biofuels. 2016;9:108.
  • Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006;24:119–226.
  • Aung T, Jiang H, Chen CC, et al. Production, gene cloning, and overexpression of a laccase in the marine-derived yeast Aureobasidium melanogenum strain 11-1 and characterization of the recombinant laccase. Mar Biotechnol. 2019;21(1):76–87.
  • Wu Y-R, Luo Z-H, Kwok-Kei Chow R, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol. 2010;101(24):9772–9777.
  • Aung T, Jiang H, Liu GL, et al. Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides. Int J Biol Macromol. 2019;130:988–996.
  • Imhoff JF. Natural products from marine fungi – still an underrepresented resource. Mar Drugs. 2016;14(1):19.
  • Deshmukh SK, Agrawal S, Gupta MK, et al. Anti-infectives from mangrove endophytic fungi. South Afr J Bot. 2020; in press. DOI:10.1016/j.sajb.2020.01.006
  • Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536.
  • Toghueo R. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology. 2020;11(1):1–21.
  • Yu X, Müller WEG, Meier D, et al. Polyketide derivatives from mangrove derived endophytic fungus Pseudopestalotiopsis theae. Mar Drug. 2020;18(2):129.
  • Bibi SN, Gokhan Z, Rajesh J, et al. Fungal endophytes associated with mangroves – chemistry and biopharmaceutical potential. South Afr J Bot. 2019; in press. DOI:10.1016/j.sajb.2019.12.016
  • Lycias Joel E, Bhimba BV. Evaluation of secondary metabolites from mangrove associated fungi Meyerozyma guilliermondii. Alexandria J Med. 2013;49(3):189–194.
  • He F, Li X, Yu J-H, et al. Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037. Fitoterapia. 2019;136:104177.
  • Zheng CJ, Huang GL, Liao HX, et al. Bioactive cytosporone derivatives isolated from the mangrove-derived fungus Dothiorella sp. ML002. Bioorg Chem. 2019;85:382–385.
  • Elissawy AM, Ebada SS, Ashour ML, et al. New secondary metabolites from the mangrove-derived fungus Aspergillus sp. AV-2. Phytochem Lett. 2019;29:1–5.
  • Liu Z, Dong Z, Qiu P, et al. Two new bioactive steroids from a mangrove-derived fungus Aspergillus sp. Steroids. 2018;140:32–38.
  • Chokpaiboon S, Choodej S, Boonyuen N, et al. Highly oxygenated chromones from mangrove-derived endophytic fungus Rhytidhysteron rufulum. Phytochemistry. 2016;122:172–177.
  • Liu Z, Qiu P, Li J, et al. Anti-inflammatory polyketides from the mangrove-derived fungus Ascomycota sp. SK2YWS-L. Tetrahedron. 2018;74(7):746–751.
  • Liu GL, Chi Z, Wang GY, et al. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol. 2015;35(2):222–234.
  • Chi Z, Liu GL, Lu Y, et al. Bio-products produced by marine yeasts and their potential applications. Bioresour Technol. 2016;202:244–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.