1,066
Views
36
CrossRef citations to date
0
Altmetric
Research Articles

Developments in the study and applications of bacterial transformations of selenium species

, , , , & ORCID Icon
Pages 1250-1264 | Received 23 May 2020, Accepted 30 Jul 2020, Published online: 28 Aug 2020

References

  • Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79(1):61–80.
  • Eswayah AS, Smith TJ, Gardiner PHE. Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol. 2016;82(16):4848–4859.
  • Wadhwani SA, Shedbalkar UU, Singh R, et al. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555–2566.
  • Eswayah AS, Hondow N, Scheinost AC, et al. Methyl selenol as precursor in selenite reduction to Se/S species by methane-oxidizing bacteria. Appl Environ Microbiol. 2019;85(22):e01379.
  • Burra R, Pradenas GA, Montes RA, et al. Production of dimethyl triselenide and dimethyl diselenenyl sulfide in the headspace of metalloid-resistant Bacillus species grown in the presence of selenium oxyanions. Anal Biochem. 2010;396(2):217–222.
  • Xu H, Barton L. Se-bearing colloidal particles produced by sulfate-reducing bacteria and sulfide-oxidizing bacteria: TEM study. AiM. 2013;03(02):205–211.
  • Yang SI, George GN, Lawrence JR, et al. Multispecies biofilms transform selenium oxyanions into elemental selenium particles: studies using combined synchrotron X-ray fluorescence imaging and scanning transmission X-ray microscopy. Environ Sci Technol. 2016;50(19):10343–10350.
  • Tan LC, Nancharaiah YV, Lu S, et al. Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. Chemosphere. 2018;211:684–693.
  • Goff J, Terry L, Mal J, et al. Role of extracellular reactive sulfur metabolites on microbial Se(0) dissolution. Geobiology. 2019;17(3):320–329.
  • Connelly KRS, Stevenson C, Kneuper H, et al. Biosynthesis of selenate reductase in Salmonella enterica: critical roles for the signal peptide and DmsD. Microbiology (Reading, Engl). 2016;162(12):2136–2146.
  • Yee N, Choi J, Porter AW, et al. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes. FEMS Microbiol Lett. 2014;361(2):138–143.
  • Dridge EJ, Butler CS. Thermostable properties of the periplasmic selenate reductase from Thauera selenatis. Biochimie. 2010;92(10):1268–1273.
  • Luo JH, Chen H, Hu S, et al. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environ Sci Technol. 2018;52(7):4006–4012.
  • Subedi G, Taylor J, Hatam I, et al. Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria. Chemosphere. 2017;183:536–545.
  • Tan Y, Wang Y, Wang Y, et al. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater. 2018;359:129–138.
  • Tugarova AV, Kamnev AA. Proteins in microbial synthesis of selenium nanoparticles. Talanta. 2017;174:539–547.
  • Rauschenbach I, Yee N, Häggblom MM, et al. Energy metabolism and multiple respiratory pathways revealed by genome sequencing of Desulfurispirillum indicum strain S5. Environ Microbiol. 2011;13(6):1611–1621.
  • Hunter WJ. A Rhizobium selenitireducens protein showing selenite reductase activity. Curr Microbiol. 2014;68(3):311–316.
  • Xia X, Wu S, Li N, et al. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. J Hazard Mater. 2018;342:499–509.
  • Wells M, McGarry J, Gaye MM, et al. The respiratory selenite reductase from Bacillus selenitireducens strain MLS10. J Bacteriol. 2019;201(7):e00614.
  • Butler CS, Debieux CM, Dridge EJ, et al. Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans. 2012;40(6):1239–1243.
  • Eswayah AS, Smith TJ, Scheinost AC, et al. Microbial transformations of selenite by methane-oxidizing bacteria. Appl Microbiol Biotechnol. 2017;101(17):6713–6724.
  • Rosenfeld CE, Kenyon JA, James BR, et al. Selenium (IV,VI) reduction and tolerance by fungi in an oxic environment. Geobiology. 2017;15(3):441–452.
  • Shirsat S, Kadam A, Naushad M, et al. Selenium nanostructures: microbial synthesis and applications. RSC Adv. 2015;5(112):92799–92811.
  • Eswayah AS. Bioremediation of selenium species in solution by methanotrophic bacteria. Doctoral Dissertation. Sheffield Hallam University; 2018.
  • Lampis S, Zonaro E, Bertolini C, et al. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact. 2014;13(1):35.
  • Lampis S, Zonaro E, Bertolini C, et al. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater. 2017;324(Pt A):3–14.
  • Khoei NS, Lampis S, Zonaro E, et al. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnol. 2017;34:1–11.
  • Tian L-J, Li W-W, Zhu T-T, et al. Directed biofabrication of nanoparticles through regulating extracellular electron transfer. J Am Chem Soc. 2017;139(35):12149–12152.
  • Zhang H, Zhou H, Bai J, et al. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Coll Surf A: Physicochem Eng Asp. 2019;571:9–16.
  • Tugarova AV, Mamchenkova PV, Dyatlova YA, et al. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2018;192:458–463.
  • Tugarova AV, Mamchenkova PV, Khanadeev VA, et al. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnol. 2020;58:17–24.
  • Jain R, Jordan N, Weiss S, et al. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol. 2015;49(3):1713–1720.
  • Kamnev AA, Mamchenkova PV, Dyatlova YA, et al. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struct. 2017;1140:106–112.
  • Tugarova AV, Mamchenkova P, Dyatlova Y, et al. Biochemical study of selenite bioconversion by Azospirillum brasilense. FEBS Open Bio. 2018;8(S1):479–480.
  • Xu X, Cheng W, Liu X, et al. Selenate reduction and selenium enrichment of tea by the endophytic Herbaspirillum sp. strain WT00C. Curr Microbiol. 2020;77(4):588–601.
  • Obruca S, Sedlacek P, Koller M, et al. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv. 2018;36(3):856–870.
  • Slaninova E, Sedlacek P, Mravec F, et al. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol. 2018;102(4):1923–1931.
  • Mollania N, Tayebee R, Narenji-Sani F. An environmentally benign method for the biosynthesis of stable selenium nanoparticles. Res Chem Intermed. 2016;42(5):4253–4271.
  • Hageman SPW, van der Weijden RD, Stams AJM, et al. Bio-production of selenium nanoparticles with diverse physical properties for recovery from water. Int J Mineral Process. 2017;169:7–15.
  • Nguyen THD, Vardhanabhuti B, Lin M, et al. Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control. 2017;77:17–24.
  • Cui D, Yan C, Miao J, et al. Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater Sci Eng C Mater Biol Appl. 2018;90:104–112.
  • Bai YN, Wang XN, Lu YZ, et al. Microbial selenite reduction coupled to anaerobic oxidation of methane. Sci Total Environ. 2019;669:168–174.
  • Gonzalez-Gil G, Lens PNL, Saikaly PE. Selenite reduction by anaerobic microbial aggregates: microbial community structure, and proteins associated to the produced selenium spheres. Front Microbiol. 2016;7:571.
  • Navarro RR, Aoyagi T, Kimura M, et al. High-resolution dynamics of microbial communities during dissimilatory selenate reduction in anoxic soil. Environ Sci Technol. 2015;49(13):7684–7691.
  • Cochran AT, Bauer J, Metcalf JL, et al. Plant selenium hyperaccumulation affects rhizosphere: enhanced species richness and altered species composition. Phytobiomes. 2018;2(2):82–91.
  • Prakash NT, Sharma N, Prakash R, et al. Removal of selenium from Se enriched natural soils by a consortium of Bacillus isolates. Bull Environ Contam Toxicol. 2010;85(2):214–218.
  • Hageman SPW, van der Weijden RD, Stams AJM, et al. Microbial selenium sulfide reduction for selenium recovery from wastewater. J Hazard Mater. 2017;329:110–119.
  • Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5(12):928–938.
  • Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 2003;69(4):2313–2320.
  • Sauer K, Camper AK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002;184(4):1140–1154.
  • Tan LC, Nancharaiah YV, van Hullebusch ED, et al. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv. 2016;34(5):886–907.
  • Yang SI. Biotransformation and interactions of selenium with mixed and pure culture biofilms Doctoral Dissertation. University of Saskatchewan, Saskatoon, Saskatchewan, Canada; 2011.
  • Arnold MC, Bier RL, Lindberg TT, et al. Biofilm mediated uptake of selenium in streams with mountaintop coal mine drainage. Limnologica. 2017;65:10–13.
  • Hockin SL, Gadd GM. Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol. 2003;69(12):7063–7072.
  • Buchs B, Evangelou MW, Winkel LH, et al. Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol. 2013;47(5):2401–2407.
  • Lenz M, Smit M, Binder P, et al. Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual. 2008;37(5):1691–1700.
  • Zhang Y, Zahir ZA, Frankenberger WT. Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual. 2004;33(2):559–564.
  • Staicu LC, van Hullebusch ED, Lens PNL. Production, recovery and reuse of biogenic elemental selenium. Environ Chem Lett. 2015;13(1):89–96.
  • Tan LC, Nancharaiah YV, van Hullebusch ED, et al. Selenium: environmental significance, pollution, and biological treatment technologies. In: Tan LC, editor. Anaerobic treatment of mine wastewater for the removal of selenate and its co-contaminants. London: CRC Press; 2018. p. 9–71 [Chapter 2].
  • Janz DM, Liber K, Pickering IJ, et al. Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. Integr Environ Assess Manag. 2014;10(4):543–554.
  • He Y, Xiang Y, Zhou Y, et al. Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res. 2018;164:288–301.
  • Tan LC, Espinosa-Ortiz EJ, Nancharaiah YV, et al. Selenate removal in biofilm systems: effect of nitrate and sulfate on selenium removal efficiency, biofilm structure and microbial community. J Chem Technol Biotechnol. 2018;93(8):2380–2389.
  • Gómez-Gómez B, Arregui L, Serrano S, et al. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics. 2019;11(6):1104–1114.
  • Gupta P, Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep (Amst). 2017;13:58–71.
  • Mal J, Nancharaiah YV, van Hullebusch ED, et al. Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresour Technol. 2017;229:11–19.
  • Ng DH, Kumar A, Cao B. Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol. 2016;100(16):6935–6946.
  • Dessì P, Jain R, Singh S, et al. Effect of temperature on selenium removal from wastewater by UASB reactors. Water Res. 2016;94:146–154.
  • Ali I, Peng C, Khan ZM, et al. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. J Environ Management. 2019;230:128–150.
  • Johns NI, Blazejewski T, Gomes ALC, et al. Principles for designing synthetic microbial communities. Curr Opin Microbiol. 2016;1:46–153.
  • Ruiz-Fresneda MA, Delgado Martín J, Gómez Bolívar J, et al. Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: impact on Se mobility within the concept of radioactive wastes disposal. Environ Sci: Nano. 2018;5(9):2103–2116.
  • Vogel M, Fischer S, Maffert A, et al. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater. 2018;344:749–757.
  • Zhang W, Chen Z, Liu H, et al. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88(1):196–201.
  • Jain R, Jordan N, Tsushima S, et al. Shape change of biogenic elemental selenium nanomaterials from nanospheres to nanorods decreases their colloidal stability. Environ Sci: Nano. 2017;4(5):1054–1063.
  • Xu D, Yang L, Wang Y, et al. Proteins enriched in charged amino acids control the formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44. Sci Rep. 2018;8(1):4766.
  • Kora AJ, Rastogi L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manage. 2016;181:231–236.
  • Van Overschelde O, Guisbiers G, Snyders R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater. 2013;1(4):042114.
  • Goldan AH, Li C, Pennycook SJ, et al. Molecular structure of vapor-deposited amorphous selenium. J Appl Phys. 2016;120(13):135101.
  • Ho CT, Kim JW, Kim WB, et al. Shewanella-mediated synthesis of selenium nanowires and nanoribbons. J Mater Chem. 2010;20(28):5899–5905.
  • Pushie MJ, Pickering IJ, Korbas M, et al. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev. 2014;114(17):8499–8541.
  • Dolgova NV, Nehzati S, Choudhury S, et al. X-ray spectroscopy and imaging of selenium in living systems. BBA Gen Subjects. 2018;1862(11):2383–2392.
  • Bañuelos GS, Lin ZQ, Broadley M. Selenium biofortification. In: Pilon-Smits E, Winkel L, Lin ZQ, editors. Selenium in plants. Plant ecophysiology. Vol. 11. Cham: Springer; 2017. p. 231–255.
  • Schiavon M, Pilon-Smits EA. Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual. 2017;46(1):10–19.
  • Piacenza E, Presentato A, Zonaro E, et al. Microbial-based bioremediation of selenium and tellurium compounds. In: Derco J, Vrana B, editors. Biosorption. London: IntechOpen; 2018. p. 117–147.
  • Barlow J, Gozzi K, Kelley CP, et al. High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation. Appl Microbiol Biotechnol. 2017;101(1):455–464.
  • Nguyen VK, Park Y, Yu J, et al. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater. Bioresour Technol. 2016;212:182–189.
  • Wadgaonkar SL, Ferraro A, Nancharaiah YV, et al. In situ and ex situ bioremediation of seleniferous soils from northwestern India. J Soils Sediments. 2019;19(2):762–773.
  • Zhang Y, Kuroda M, Nakatani Y, et al. Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. J Biosci Bioeng. 2019;127(5):618–624.
  • Zhang Y, Kuroda M, Arai S, et al. Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Res. 2019;154:327–335.
  • Chen X, Lai C-Y, Fang F, et al. Model-based evaluation of selenate and nitrate reduction in hydrogen-based membrane biofilm reactor. Chem Eng Sci. 2019;195:262–270.
  • Zhang J, Wang Y, Shao Z, et al. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci (China). 2019;77:238–249.
  • Wang X, He Z, Luo H, et al. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci Total Environ. 2018;615:615–623.
  • Wang X, Pan X, Gadd GM. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles. Sci Total Environ. 2019;658:8–15.
  • Dang F, Li Z, Zhong H. Methylmercury and selenium interactions: mechanisms and implications for soil remediation. Crit Rev Environ Sci Technol. 2019;49(19):1737–1768.
  • Tugarova AV, Vetchinkina EP, Loshchinina EA, et al. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles. Microb Ecol. 2014;68(3):495–503.
  • Tugarova A, Mamchenkova P, Dyatlova Y, et al. Bacteria as cell factories for producing selenium nanoparticles: their synthesis by the rhizobacterium Azospirillum brasilense and characterisation. New Biotechnol. 2018;44:S18.
  • Avendaño R, Chaves N, Fuentes P, et al. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci Rep. 2016;6:37155.
  • Cui Y-H, Li L-L, Zhou N-Q, et al. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme Microb Technol. 2016;95:185–191.
  • Estevam EC, Griffin S, Nasim MJ, et al. Natural selenium particles from Staphylococcus carnosus: hazards or particles with particular promise? J Hazard Mater. 2017;324(Pt A):22–30.
  • Gabalov KP, Rumina MV, Tarasenko TN, et al. The adjuvant effect of selenium nanoparticles, Triton X-114 detergent micelles, and lecithin liposomes for Escherichia coli antigens. Appl Biochem Microbiol. 2017;53(5):587–593.
  • Xia X, Zhou Z, Wu S, et al. Adsorption removal of multiple dyes using biogenic selenium nanoparticles from an Escherichia coli strain overexpressed selenite reductase. CsrF. Nanomater. 2018;8(4):234.
  • Xu C, Guo Y, Qiao L, et al. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front Microbiol. 2018;9:1129.
  • Wadgaonkar SL, Mal J, Nancharaiah YV, et al. Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Appl Microbiol Biotechnol. 2018;102(6):2899–2911.
  • Fellowes JW, Pattrick RAD, Lloyd JR, et al. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology. 2013;24(14):145603.
  • Suresh AK. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochim. Acta Part A: Mol Biomol Spectrosc. 2014;130:344–349.
  • Xiong LH, Cui R, Zhang ZL, et al. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano. 2014;8(5):5116–5124.
  • Yan Z-Y, Ai X-X, Su Y-L, et al. Intracellular biosynthesis of fluorescent CdSe quantum dots in Bacillus subtilis: a strategy to construct signaling bacterial probes for visually detecting interaction between Bacillus subtilis and Staphylococcus aureus. Microsc Microanal. 2016;22(1):13–21.
  • Brooks J, Lefebvre DD. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2017;101(7):2735–2745.
  • Mal J, Nancharaiah YV, Bera S, et al. (a) Biosynthesis of CdSe nanoparticles by anaerobic granular sludge. Environ Sci: Nano. 2017;4(4):824–833.
  • Wang D, Xia X, Wu S, et al. The essentialness of glutathione reductase GorA for biosynthesis of Se(0)-nanoparticles and GSH for CdSe quantum dot formation in Pseudomonas stutzeri TS44. J Hazard Mater. 2019;366:301–310.
  • Cui Y-H, Li L-L, Tian L-J, et al. Synthesis of CdS1-XSeX quantum dots in a protozoa Tetrahymena pyriformis. Appl Microbiol Biotechnol. 2019;103(2):973–980.
  • Qi S, Yang S, Yue L, et al. Extracellular biosynthesis of Cu2–xSe nanocrystallites with photocatalytic activity. Mater Res Bull. 2019;111:126–132.
  • Zhou H, Che L, Guo Z, et al. Bacteria-mediated ultrathin Bi2Se3 nanosheets fabrication and their application in photothermal cancer therapy. ACS Sustainable Chem Eng. 2018;6(4):4863–4870.
  • Che L, Xu W, Zhan J, et al. Complete genome sequence of Bacillus cereus CC-1, a novel marine selenate/selenite reducing bacterium producing metallic selenides nanomaterials. Curr Microbiol. 2019;76(1):78–85.
  • Ayano H, Kuroda M, Soda S, et al. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. J Biosci Bioeng. 2015;119(4):440–445.
  • Tan HW, Mo H-Y, Lau ATY, et al. Selenium species: current status and potentials in cancer prevention and therapy. IJMS. 2018;20(1):1–26.
  • Sonkusre P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study. Front Oncol. 2020;9:1541.
  • Vahidi H, Barabadi H, Saravanan M. Emerging selenium nanoparticles to combat cancer: a systematic review. J Clust Sci. 2020;31(2):301–309.
  • Sakr TM, Korany M, Katti KV. Selenium nanomaterials in biomedicine – an overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol. 2018;46:223–233.
  • Khurana A, Tekula S, Saifi MA, et al. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–812.
  • Cremonini E, Boaretti M, Vandecandelaere I, et al. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol. 2018;11(6):1037–1047.
  • Zhang Y, Gladyshev VN. Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev. 2009;109(10):4828–4861.
  • Müller S, Heider J, Böck A. The path of unspecific incorporation of selenium in Escherichia coli. Arch Microbiol. 1997;168(5):421–427.
  • Böck A. Biosynthesis of selenoproteins-an overview. Biofactors. 2000;11(1–2):77–78.
  • Böck A, Forchhammer K, Heider J, et al. Selenocysteine: the 21st amino acid. Mol Microbiol. 1991;5(3):515–520.
  • Peng T, Lin J, Xu Y, et al. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. Isme J. 2016;10(8):2048–2059.
  • Lin J, Peng T, Jiang L, et al. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol. 2015;7(3):664–676.
  • Fernandes J, Hu X, Smith M R, et al. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med. 2018;127:215–227.
  • Zhang Y. Prokaryotic selenoproteins and selenoproteomes. In: Hatfield D, Schweizer U, Tsuji P, Gladyshev V, editors. Selenium. Cham: Springer; 2016. p. 141–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.