1,023
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Regulation of intracellular ATP supply and its application in industrial biotechnology

, , &
Pages 1151-1162 | Received 07 Jan 2020, Accepted 10 Aug 2020, Published online: 30 Aug 2020

References

  • Hackett SR, Zanotelli VRT, Xu W, et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science. 2016;354(6311):aaf2786.
  • Wu G, Yan Q, Jones JA, et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34(8):652–664.
  • Dellomonaco C, Clomburg JM, Miller EN, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476(7360):355–359.
  • Yu T, Zhou YJ, Huang M, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell. 2018;174(6):1549–1558.
  • Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, et al. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng. 2010;107(2):369–381.
  • Löffler M, Simen JD, Jäger G, et al. Engineering E. coli for large-scale production - strategies considering ATP expenses and transcriptional responses. Metab Eng. 2016;38:73–85.
  • Lu H, Liu X, Huang M, et al. Integrated isotope-assisted metabolomics and 13C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact. 2015;14:147.
  • He L, Xiao Y, Gebreselassie N, et al. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng. 2014;111(3):575–585.
  • Hayakawa K, Kajihata S, Matsuda F, et al. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae. J Biosci Bioeng. 2015;120(5):532–538.
  • Man Z, Rao Z, Xu M, et al. Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metab Eng. 2016;38:310–321.
  • Brynildsen MP, Winkler JA, Spina CS, et al. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotechnol. 2013;31(2):160–165.
  • Baek SH, Kwon EY, Bae SJ, et al. Improvement of D-lactic acid production in Saccharomyces cerevisiae under acidic conditions by evolutionary and rational metabolic engineering. Biotechnol J. 2017;12(10):1700015.
  • Wang W, Li S, Li Z, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat Biotechnol. 2020;38(1):76–83.
  • Willquist K, van Niel EWJ. Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Metab Eng. 2010;12(3):282–290.
  • Harder B-J, Bettenbrock K, Klamt S. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng. 2018;115(1):156–164.
  • Chen Y, Tan T. Enhanced S-adenosylmethionine production by increasing ATP levels in Baker’s Yeast (Saccharomyces cerevisiae). J Agric Food Chem. 2018;66(20):5200–5209.
  • Luo Z, Zeng W, Du G, et al. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synth Biol. 2019;8(4):787–795.
  • Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33(4):377–383.
  • Baumgart M, Unthan S, Kloß R, et al. Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol. 2018;7(1):132–144.
  • Zhou J, Liu L, Shi Z, et al. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv. 2009;27(1):94–101.
  • Hädicke O, Klamt S. Manipulation of the ATP pool as a tool for metabolic engineering. Biochem Soc Trans. 2015;43(6):1140–1145.
  • Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact. 2015;14:198.
  • Reddy GK, Wendisch VF. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiol. 2014;14:54.
  • Li L, Zou D, Ji A, et al. Multilevel Metabolic engineering of Bacillus amyloliquefaciens for production of the platform chemical putrescine from sustainable biomass hydrolysates. ACS Sustainable Chem Eng. 2020;8(5):2147–2157.
  • Zhu X, Tan Z, Xu H, et al. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab Eng. 2014;24:87–96.
  • Zhang X, Jantama K, Moore JC, et al. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA. 2009;106(48):20180–20185.
  • Singh A, Cher Soh K, Hatzimanikatis V, et al. Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng. 2011;13(1):76–81.
  • Kim HJ, Kwon YD, Lee SY, et al. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Appl Microbiol Biotechnol. 2012;94(4):1079–1086.
  • Liew F, Henstra AM, Kӧpke M, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng. 2017;40:104–114.
  • Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng. 2013;17:42–50.
  • Sun T, Miao L, Li Q, et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett. 2014;36(7):1515–1522.
  • Chen Y, Zhou H, Wang M, et al. Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production. RSC Adv. 2017;7(36):22409–22414.
  • Komati Reddy G, Lindner SN, Wendisch VF. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol. 2015;81(6):1996–2005.
  • Qi H, Li S, Zhao S, et al. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS One. 2014;9(4):e93815.
  • Zhang X, Zhang R, Bao T, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng. 2014;23:34–41.
  • Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature. 2016;537(7622):694–697.
  • Kozak BU, van Rossum HM, Luttik MAH, et al. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio. 2014;5(5):e01696–e01614.
  • Kozak BU, van Rossum HM, Benjamin KR, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng. 2014;21:46–59.
  • Liu R, Zhu F, Lu L, et al. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng. 2014;22:10–21.
  • Kang A, George KW, Wang G, et al. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng. 2016;34:25–35.
  • Chen Y, Lou S, Fan L, et al. Control of ATP concentration in Escherichia coli using synthetic small regulatory RNAs for enhanced S-adenosylmethionine production. FEMS Microbiol Lett. 2015;362(15):fnv115.
  • Tao S, Qian Y, Wang X, et al. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Microb Cell Fact. 2018;17(1):147.
  • Zhang J, Quan C, Wang C, et al. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Fact. 2016;15:38.
  • Opgenorth PH, Korman TP, Iancu L, et al. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat Chem Biol. 2017;13(9):938–942.
  • Bogorad IW, Lin TS, Liao JC. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature. 2013;502(7473):693–697.
  • Hädicke O, Bettenbrock K, Klamt S. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol Bioeng. 2015;112(10):2195–2199.
  • Wang J, Wang J, Tai Y, et al. Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli. Appl Microbiol Biotechnol. 2018;102(17):7377–7388.
  • Skorokhodova AY, Gulevich AY, Debabov VG. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. J Biotechnol. 2019;293:47–55.
  • Alberge F, Espinosa L, Seduk F, et al. Dynamic subcellular localization of a respiratory complex controls bacterial respiration. eLife. 2015;4:e05357.
  • Agrawal S, Jaswal K, Shiver AL, et al. A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. J Biol Chem. 2017;292(49):20086–20099.
  • Budin I, de Rond T, Chen Y, et al. Viscous control of cellular respiration by membrane lipid composition. Science. 2018;362(6419):1186–1189.
  • Schuhmacher T, Löffler M, Hurler T, et al. Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli. J Biotechnol. 2014;190:96–104.
  • Liu Y, Zhu Y, Ma W, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng. 2014;24:61–69.
  • Cai D, Chen Y, He P, et al. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng. 2018;115(10):2541–2553.
  • Jung H-M, Kim YH, Oh M-K. Formate and nitrate utilization in Enterobacter aerogenes for semi-anaerobic production of isobutanol. Biotechnol J. 2017;12(11):1700121.
  • Cai D, Hu S, Chen Y, et al. Enhanced production of poly-γ-glutamic acid by overexpression of the global anaerobic regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol. 2018;185(4):958–970.
  • Lai B, Yu S, Bernhardt PV, et al. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol Biofuels. 2016;9:39.
  • Portnoy VA, Scott DA, Lewis NE, et al. Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655. Appl Environ Microbiol. 2010;76(19):6529–6540.
  • Koch-Koerfges A, Pfelzer N, Platzen L, et al. Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain. Biochim Biophys Acta. 2013;1827(6):699–708.
  • Zhu J, Sánchez A, Bennett GN, et al. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products. Metab Eng. 2011;13(6):704–712.
  • Wu H, Tuli L, Bennett GN, et al. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli. Metab Eng. 2015;28:159–168.
  • Wu H, Bennett GN, San KY. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation. Biotechnol Bioeng. 2015;112(8):1720–1726.
  • Xu R, Wang D, Wang C, et al. Improved S-adenosylmethionine and glutathione biosynthesis by heterologous expression of an ATP6 gene in Candida utilis. J Basic Microbiol. 2018;58(10):875–882.
  • Li X, Chen J, Andersen JM, et al. Cofactor engineering redirects secondary metabolism and enhances erythromycin production in Saccharopolyspora erythraea. ACS Synth Biol. 2020;9(3):655–670.
  • Wang J, Niyompanich S, Tai YS, et al. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal Integration. Appl Environ Microbiol. 2016;82(24):7176–7184.
  • Sawada K, Kato Y, Imai K, et al. Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum. J Biosci Bioeng. 2012;113(4):467–473.
  • Liu J, Kandasamy V, Würtz A, et al. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand. Appl Microbiol Biotechnol. 2016;100(22):9509–9517.
  • Boecker S, Zahoor A, Schramm T, et al. Broadening the scope of enforced ATP wasting as a tool for metabolic engineering in Escherichia coli. Biotechnol J. 2019;14(9):1800438.
  • Yoshizawa S, Kumagai Y, Kim H, et al. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci USA. 2014;111(18):6732–6737.
  • Pushkarev A, Béjà O. Functional metagenomic screen reveals new and diverse microbial rhodopsins. Isme J. 2016;10(9):2331–2335.
  • Pushkarev A, Inoue K, Larom S, et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature. 2018;558(7711):595–599.
  • Martinez A, Bradley AS, Waldbauer JR, et al. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci USA. 2007;104(13):5590–5595.
  • Palovaara J, Akram N, Baltar F, et al. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci USA. 2014;111(35):E3650–E3658.
  • Inoue K, Ono H, Abe-Yoshizumi R, et al. A light-driven sodium ion pump in marine bacteria. Nat Commun. 2013;4:1678.
  • Niho A, Yoshizawa S, Tsukamoto T, et al. Demonstration of a light-driven SO42- transporter and its spectroscopic characteristics. J Am Chem Soc. 2017;139(12):4376–4389.
  • Inoue K, Tsukamoto T, Shimono K, et al. Converting a light-driven proton pump into a light-gated proton channel. J Am Chem Soc. 2015;137(9):3291–3299.
  • Kwon YM, Patra AK, Chiura HX, et al. Production of extracellular vesicles with light-induced proton pump activity by proteorhodopsin-containing marine bacteria. MicrobiologyOpen. 2019;8:e808.
  • Wang Y, Li Y, Xu T, et al. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition. Biotechnol Bioeng. 2015;112(5):947–956.
  • Sun Y, Fukamachi T, Saito H, et al. ATP requirement for acidic resistance in Escherichia coli. J Bacteriol. 2011;193(12):3072–3077.
  • Ravi Kant H, Balamurali M, Meenakshisundaram S. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-L-methionine employing molecular strategies with process tuning. J Biotechnol. 2014;188:112–121.
  • Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351(6280):aad6253.
  • Baumgart M, Unthan S, Rückert C, et al. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol. 2013;79(19):6006–6015.
  • Martínez-García E, Nikel PI, Chavarría M, et al. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ Microbiol. 2014;16(1):291–303.
  • Martínez-García E, Nikel PI, Aparicio T, et al. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact. 2014;13:159.
  • Lieder S, Nikel PI, de Lorenzo V, et al. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact. 2015;14:23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.