1,254
Views
32
CrossRef citations to date
0
Altmetric
Review Articles

Nitrilase: a promising biocatalyst in industrial applications for green chemistry

, , ORCID Icon &
Pages 72-93 | Received 06 Jan 2020, Accepted 16 Aug 2020, Published online: 12 Oct 2020

References

  • Yamamoto K, Ueno Y, Otsubo K, et al. Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226. Appl Environ Microb. 1990;56(10):3125–3129.
  • Bergeron S, Chaplin DA, Edwards JH, et al. Nitrilase-catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate. Org Process Res Dev. 2006;10(3):661–665.
  • Huang H, Xu J. Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity. Biochem Eng J. 2006;30(1):11–15.
  • Singh R, Sharma R, Tewari N, et al. Nitrilase and its application as a 'green' catalyst. Chem Biodivers. 2006;3(12):1279–1287.
  • Jullesson D, David F, Pfleger B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv. 2015;33(7):1395–1402.
  • de Paula RG, Antoniêto ACC, Ribeiro LFC, et al. Engineered Microbial Host Selection for Value-Added Bioproducts from Lignocellulose. Biotechnol Adv. 2019;37(6):107347.
  • Zeng AP. New bioproduction systems for chemicals and fuels: needs and new development. Biotechnol Adv. 2019;37(4):508–518.
  • Ganigué R, Naert P, Candry P, et al. Fruity flavors from waste: a novel process to upgrade crude glycerol to ethyl valerate. Bioresource Technol. 2019;289:121574.
  • Tang CD, Ding PJ, Shi HL, et al. One-pot synthesis of phenylglyoxylic acid from racemic mandelic acids via cascade biocatalysis. J Agric Food Chem. 2019;67(10):2946–2953.
  • Karnwal A, Singh S, Kumar V, et al. Fungal enzymes for the textile industry. In: Yadav A, Mishra S, Singh S, et al. Recent advancement in white biotechnology through fungi. Springer, Cham; 2019. p. 459–482.
  • Zhang Q, Wu ZM, Hao CL, et al. Highly regio-and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase. Appl. Microbiol. Biot. 2019;103:5617–5626.
  • Noyori R. Synthesizing our future. Nat Chem. 2009;1(1):5–6.
  • Wohlgemuth R. Biocatalysis-key to sustainable industrial chemistry. Curr Opin Biotechnol. 2010;21(6):713–724.
  • Koeller KM, Wong CH. Enzymes for chemical synthesis. Nature. 2001;409(6817):232–240.
  • Tao J, Xu JH. Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol. 2009;13(1):43–50.
  • Sanderson K. Chemistry: enzyme expertise. Nature. 2011;471(7338):397–398.
  • Fleming FF, Yao L, Ravikumar P, et al. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53(22):7902–7917.
  • Bandyopadhyay AK, Nagasawa T, Asano Y, et al. Purification and characterization of benzonitrilases from Arthrobacter sp. strain J-1. Appl Environ Microb. 1986;51(2):302–306.
  • Hann EC, Eisenberg A, Fager SK, et al. 5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23. Bioorgan Med Chem. 1999;7(10):2239–2245.
  • Banerjee A, Sharma R, Banerjee U. The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol. 2002;60(1-2):33–44.
  • Mylerová V, Martínková L. Synthetic applications of nitrile-converting enzymes. Curr Org Chem. 2003;7:1279–1295.
  • Prasad S, Bhalla TC. Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv. 2010;28(6):725–741.
  • Veselá A, Franc M, Pelantová H, et al. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation. 2010;21(5):761–770.
  • Martínková L, Uhnáková B, Pátek M, et al. Biodegradation potential of the genus Rhodococcus. Environ Int. 2009;35(1):162–177.
  • Gong J, Lu Z, Li H, et al. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact. 2012;11:142–142.
  • Jin L, Liu Z, Xu J, et al. Biosynthesis of nicotinic acid from 3-cyanopyridine by a newly isolated Fusarium proliferatum ZJB-09150. World J Microbiol Biotechnol. 2013;29(3):431–440.
  • Liu Y, Yin Y, Wang Z, et al. Expression of nitrilases in Brassica juncea var. tumida tsen in root galls caused by Plasmodiophora brassicae. J Integr Agr. 2012;11(1):100–108.
  • Ni K, Wang H, Zhao L, et al. Efficient production of (R)-(-)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol. 2013;167(4):433–440.
  • Xu M, Ren J, Gong J, et al. Biocatalytic desymmetric hydrolysis of 3-(4-chlorophenyl)-glutaronitrile to the key precursor of optically pure baclofen. Chinese J. Biotechnol. 2013;29:31.
  • Zhang C, Zhang Z, Li C, et al. Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol. 2012;95(1):91–99.
  • Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2001;2(1):reviews0001.1.
  • Thuku RN, Brady D, Benedik MJ, et al. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol. 2009;106(3):703–727.
  • Brenner C. Catalysis in the nitrilase superfamily. Curr Opin Struc Biol. 2002;12(6):775–782.
  • Bhalla TC, Kumar V, Kumar V, et al. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotech. 2018;185:925–946.
  • Howden AJ, Preston GM. Nitrilase enzymes and their role in plant-microbe interactions. Microb Biotechnol. 2009;2(4):441–451.
  • Martínková L. Nitrile metabolism in fungi: a review of its key enzymes nitrilases with focus on their biotechnological impact. Fungal Biol Rev. 2019;33(2):149–157.
  • Gong J, Lu Z, Li H, et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol. 2013;97(15):6603–6611.
  • Martınková L, Stolz A, van Rantwijk F, et al. Nitrile converting enzymes involved in natural and synthetic cascade reactions. In: Riva S, Fessner WD, editors. Cascade biocatalysis. Wiley; 2014; p. 249–270.
  • Sharma M, Akhter Y, Chatterjee S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J Microb Biot. 2019;35:70.
  • Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol. 2016;38:9–13.
  • Gong J, Shi J, Lu Z, et al. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol. 2017;37(1):69–81.
  • Chen Z, Zhao J, Jiang S, et al. Recent research advancements on regioselective nitrilase: fundamental and applicative aspects. Appl Microbiol Biot. 2019;103:6393–6405.
  • Martinkova L, Rucka L, Nesvera J, et al. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microb Biot. 2017;33:8.
  • Wang MX. Enantioselective biotransformations of nitriles in organic synthesis. Acc Chem Res. 2015;48(3):602–611.
  • Kabaivanova L, Chernev G, Salvado IMM, et al. Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates. Cent Eur J Chem. 2011;9:232–239.
  • Li T, Liu J, Bai R, et al. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Res. 2007;41(15):3465–3473.
  • Mathew CD, Nagasawa T, Kobayashi M, et al. Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microb. 1988;54(4):1030–1032.
  • Stalker DM, Mcbride KE. Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. J Bacteriol. 1987;169(3):955–960.
  • Sheldon RA. E factors, green chemistry and catalysis: an odyssey. Chem Commun. 2008;39:3352–3365.
  • Gong JS, Zhang Q, Gu BC, et al. Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. Bioresour Technol. 2018;260:427–431.
  • Bestwick LA, Grønning LM, James DC, et al. Purification and characterization of a nitrilase from Brassica napus. Physiol Plant. 1993;89(4):811–816.
  • Sharma NN, Sharma M, Bhalla TC. Nocardia globerula NHB-2 nitrilase catalysed biotransformation of 4-cyanopyridine to isonicotinic acid. AMB Express. 2012;2(1):25–25.
  • Malandra A, Cantarella M, Kaplan O, et al. Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Appl Microbiol Biotechnol. 2009;85(2):277–284.
  • Vejvoda V, Kaplan O, Bezouska K, et al. Mild hydrolysis of nitriles by the immobilized nitrilase from Aspergillus niger K10. J Mol Catal B-Enzym. 2006;39(1-4):55–58.
  • Liu Z, Dong L, Cheng F, et al. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. J Agric Food Chem. 2011;59(21):11560–11570.
  • Bhatia S, Mehta P, Bhatia R, et al. Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol. 2014;98(1):83–94.
  • Petřickova A, Sosedov O, Baum S, et al. Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B-Enzym. 2012;77:74–80.
  • Sosedov O, Stolz A. Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol. 2014;98(4):1595–1607.
  • Wang H, Sun H, Wei D. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol. 2013;13:14
  • Zhang X, Liu Z, Xue Y, et al. Production of R-mandelic acid using nitrilase from recombinant E. coli cells immobilized with tris(hydroxymethyl)phosphine. Appl Biochem Biotechnol. 2018;184(3):1024–1035.
  • He YC, Zhang ZJ, Xu JH, et al. Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401. J Ind Microbiol Biotechnol. 2010;37(7):741–750.
  • Baum S, van Rantwijk F, Stolz A. Application of a recombinant Escherichia coli whole-cell catalyst expressing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide. Adv Synth Catal. 2012;354(1):113–122.
  • Haribabu A, Dunming Z, Yan Y, et al. Asymmetric synthesis of both antipodes of beta-hydroxy nitriles and beta-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. J Org Chem. 2010;40:1658–1662.
  • Xie Z, Feng J, Garcia E, et al. Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acid. J Mol Catal B-Enzym. 2006;41(3-4):75–80.
  • Dong HP, Liu ZQ, Zheng YG, et al. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis. Appl Microbiol Biotechnol. 2010;87(4):1335–1345.
  • Dong H, Liu Z, Zheng Y, et al. Medium optimization for nitrilase production by newly isolated Rhodococcus erythropolis ZJB-0910 using statistical designs. Chem Biochem Eng Q. 2011;25:351–358.
  • Yoshida T, Mitsukura K, Mizutani T, et al. Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase. Biotechnol Lett. 2013;35(5):685–688.
  • Benz P, Muntwyler R, Wohlgemuth R. Chemoenzymatic synthesis of chiral carboxylic acids via nitriles. J Chem Technol Biotechnol. 2007;82(12):1087–1098.
  • Allen J, Philippe MD, Rivron L, et al. Chemoselective hydrolysis of a radiolabelled nitrile using nitrilases. J Label Compd Radiopharm. 2007;50(5-6):624–626.
  • Hann EC, Sigmund AE, Fager SK, et al. Regioselective biocatalytic hydrolysis of (E,Z)-2-methyl-2-butenenitrile for production of (E)-2-methyl-2-butenoic acid. Tetrahedron. 2004;60(3):577–581.
  • Bayer S, Birkemeyer C, Ballschmiter M. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol. 2011;89(1):91–98.
  • Xu Z, Xiong N, Zou SP, et al. Highly efficient conversion of 1-cyanocycloalkaneacetonitrile using a “super nitrilase mutant”. Bioprocess Biosyst Eng. 2019;42(3):455–463.
  • Zhu D, Mukherjee C, Biehl ER, et al. Nitrilase-catalyzed selective hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance. Adv Synth Catal. 2007;349(10):1667–1670.
  • Ingvorsen K, Yde B, Godtfredsen SE, et al. Microbial hydrolysis of organic nitriles and amides. Ciba Found Symp. 1988;140:16–31.
  • McBride KE, Kenny JW, Stalker DM. Metabolism of the herbicide bromoxynil by Klebsiella pneumoniae subsp. Ozaenae. Appl Environ Microb. 1986;52(2):325–330.
  • Jin L, Li Y, Liu Z, et al. Characterization of a newly isolated strain Rhodococcus erythropolis ZJB-09149 transforming 2-chloro-3-cyanopyridine to 2-chloronicotinic acid. N Biotechnol. 2011;28(6):610–615.
  • Sharma NN, Sharma M, Bhalla TC. An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol. 2011;38(9):1235–1243.
  • Gradley ML, Knowles CJ. Asymmetric hydrolysis of chiral nitriles by Rhodococcus rhodochrous NCIMB 11216 nitrilase. Biotechnol Lett. 1994;16(1):41–46.
  • Kobayashi M, Yanaka N, Nagasawa T, et al. Monohydrolysis of an aliphatic dinitrile compound by nitrilase from Rhodococcus rhodochrous k22. Tetrahedron. 1990;46(16):5587–5590.
  • Yamamoto K, Komatsu K. Purification and characterization of nitrilase responsible for the enantioselective hydrolysis from Acinetobacter sp. AK 226. Agric. Agric Biol Chem. 1991;55(6):1459–1466.
  • Zhang X, Liu Z, Xue Y, et al. Nitrilase-catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase. Biotechnol Appl Bioc. 2016;63(4):479–489.
  • Attia M, Herdeis C, Bräuner-Osborne H. GABA(B)-agonistic activity of certain baclofen homologues. Molecules. 2013;18(9):10266–10284.
  • Chauhan S, Wu S, Blumerman S, et al. Purification, cloning, sequencing and over-expression in Escherichia coli of a regioselective aliphatic nitrilase from Acidovorax facilis 72W. Appl Microbiol Biotechnol. 2003;61(2):118–122.
  • Zhong X, Yang S, Su X, et al. Production of cyanocarboxylic acid by Acidovorax facilis 72W nitrilase displayed on the spore surface of Bacillus subtilis. J. Microbiol. Biotechn. 2019;29(5):749–757.
  • Zhu D, Mukherjee C, Biehl ER, et al. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol. 2007;129(4):645–650.
  • Kabaivanova L, Dimitrov P, Boyadzhieva I, et al. Nitrile degradation by free and immobilized cells of the thermophile Bacillus sp. UG-5B, isolated from polluted industrial waters. World J Microbiol Biotechnol. 2008;24(11):2383–2388.
  • Xue Y, Liu Z, Xu M, et al. Efficient separation of (R)-(−)-mandelic acid biosynthesized from (R,S)-mandelonitrile by nitrilase using ion-exchange process. J Chem Technol Biotechnol. 2011;86(3):391–397.
  • Xue Y, Xu S, Liu Z, et al. Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile for production of (R)-(−)-mandelic acid by a newly isolated mutant strain. J Ind Microbiol Biotechnol. 2011;38(2):337–345.
  • Dubey SK, Holmes DS. Biological cyanide destruction mediated by microorganisms. World J Microb Biot. 1995;11(3):257–265.
  • Holtze MS, Sørensen SR, Sørensen J, et al. Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments-insights into degradation pathways, persistent metabolites and involved degrader organisms. Environ Pollut. 2008;154(2):155–168.
  • Jin L, Li Z, Liu Z, et al. Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase. J Ind Microbiol Biotechnol. 2014;41(10):1479–1486.
  • Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol. 2006;72(2):346–352.
  • Zhang Z, Xu J, He Y, et al. Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem. 2010;45(6):887–891.
  • Xue Y, Yang Y, Lv S, et al. High-throughput screening methods for nitrilases. Appl Microbiol Biotechnol. 2016;100(8):3421–3432.
  • Kobayashi M, Shimizu S. Versatile nitrilases – nitrile-hydrolyzing enzymes. FEMS Microbiol. Lett. 1994;120(3):217–223.
  • Banerjee A, Kaul P, Sharma R, et al. A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. J Biomol Screen. 2003;8(5):559–565.
  • Kaul P, Banerjee A, Mayilraj S, et al. Screening for enantioselective nitrilases: Kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron-Asymmetr. 2004;15(2):207–211.
  • Martinkova L, Vejvoda V, Křen V. Selection and screening for enzymes of nitrile metabolism. J. Biotechnol. 2008;133:318–326.
  • Kaplan O, Bezouska K, Malandra A, et al. Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnol Lett. 2011;33(2):309–312.
  • Goddard J, Reymond J. Enzyme assays for high-throughput screening. Curr Opin Biotechnol. 2004;15(4):314–322.
  • Kamal AE, Kumar MS, Kumar CG, et al. Bioconversion of acrylonitrile to acrylic acid by Rhodococcus ruber Strain AKSH-84. J Microbiol Biotechnol. 2011;21(1):37–42.
  • Gong J, Lu Z, Shi J, et al. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus— Fusarium oxysporum H3. Appl Biochem Biotechnol. 2011;165(3-4):963–977.
  • Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol. 2005;1(2):106–112.
  • Kaiser O, Bartels D, Bekel T, et al. Whole genome shotgun sequencing guided by bioinformatics pipelines-an optimized approach for an established technique. J Biotechnol. 2003;106(2-3):121–133.
  • Podar M, Eads JR, Richardson TH. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol. 2005;5:42
  • Raes J, Foerstner KU, Bork P. Get the most out of your metagenome: computational analysis of environmental sequence data. Curr Opin Microbiol. 2007;10(5):490–498.
  • Desantis G, Zhu Z, Greenberg WA, et al. An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc. 2002;124(31):9024–9025.
  • Dooley-Cullinane TM, O'Reilly C, Aslam B, et al. The use of clade-specific PCR assays to identify novel nitrilase genes from environmental isolates. Microbiologyopen. 2019;8(4):e00700
  • Seffernick JL, Samanta SK, Louie TM, et al. Investigative mining of sequence data for novel enzymes: a case study with nitrilases. J Biotechnol. 2009;143(1):17–26.
  • Heinemann U, Engels D, BüRger S, et al. Cloning of a nitrilase gene from the Cyanobacterium Synechocystis sp. Strain PCC6803 and heterologous expression and characterization of the encoded protein. AEM. 2003;69(8):4359–4366.
  • Banerjee A, Sharma R, Banerjee UC. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnol Appl Biochem. 2003;37(3):289–293.
  • Zhu D, Mukherjee C, Yang Y, et al. A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. J Biotechnol. 2008;133(3):327–333.
  • Sharma N, Thakur N, Raj T, et al. Mining of microbial genomes for the novel sources of nitrilases. Biomed Res Int. 2017;2017:7039245.
  • Liu Z, Zhang X, Xue Y, et al. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid. J Agric Food Chem. 2014;62(20):4685–4694.
  • Sahu R, Meghavarnam AK, Janakiraman S. A simple, efficient and rapid screening technique for differentiating nitrile hydratase and nitrilase producing bacteria. Biotechnol Rep (Amst)). 2019;24:e00396.
  • Santoshkumar M, Nayak AS, Anjaneya O, et al. A plate method for screening of bacteria capable of degrading aliphatic nitriles. J Ind Microbiol Biotechnol. 2010;37(1):111–115.
  • Zhou DJ, Ouyang LM, Xu JH, et al. Rapid screening of nitrilase producing strains from soil. J. Ecust. 2009;35:545–548.
  • Mueller P, Egorova K, Vorgias CE, et al. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expr Purif. 2006;47(2):672–681.
  • Yazbeck DR, Durao P, Xie Z, et al. A metal ion-based method for the screening of nitrilases. J Mol Catal B-Enzym. 2006;39(1-4):156–159.
  • Reisinger C, van Assema F, Schürmann M, et al. A versatile colony assay based on NADH fluorescence. J Mol Catal B-Enzym. 2006;39(1-4):149–155.
  • Vergne-Vaxelaire C, Bordier F, Fossey A, et al. Nitrilase activity screening on structurally diverse substrates: providing biocatalytic tools for organic synthesis. Adv Synth Catal. 2013;355(9):1763–1779.
  • He YC, Ma CL, Xu JH, et al. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Appl Microbiol Biotechnol. 2011;89(3):817–823.
  • Zhu Q, Fan A, Wang Y, et al. Novel sensitive high-throughput screening strategy for nitrilase-producing strains. AEM. 2007;73(19):6053–6057.
  • Zhang J, Liu Z, Zheng Y, et al. Screening and characterization of microorganisms capable of converting iminodiacetonitrile to iminodiacetic acid. Eng Life Sci. 2012;12(1):69–78.
  • Viccaro JP, Ambye EL. Colorimetric determination of glycolic acid with β-naphthol. Microchem J. 1972;17(6):710–718.
  • Hu JG, Wang YJ, Zheng YG, et al. Isolation of glycolonitrile-hydrolyzing microorganism based on colorimetric reaction. Enzyme Microb Tech. 2007;41(3):244–249.
  • Gülçin I, Küfrevioglu OI, Oktay M, et al. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol. 2004;90(2-3):205–215.
  • DeSantis G, Wong K, Farwell B, et al. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (gssm). J Am Chem Soc. 2003;125(38):11476–11477.
  • He Y, Liu Y, Ma C, et al. Modified ferric hydroxamate spectrophotometry for assaying glycolic acid from the hydrolysis of glycolonitrile by Rhodococcus sp. CCZU10-1. Biotechnol Bioproc E. 2011;16(5):901–907.
  • DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol. 2016;7:1521–1521.
  • Gavagan JE, DiCosimo R, Eisenberg A, et al. A Gram-negative bacterium producing a heat-stable nitrilase highly active on aliphatic dinitriles. Appl Microbiol Biot. 1999;52(5):654–659.
  • Mauger J, Nagasawa T, Yamada H. Occurrence of a novel nitrilase, arylacetonitrilase in Alcaligenes faecalis JM3. Arch Microbiol. 1990;155(1):1–6.
  • Nagasawa T, Mauger J, Yamada H. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Febs J. 1990;194:765–772.
  • Yamamoto K, Oishi K, Fujimatsu I, et al. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microb. 1991;57(10):3028–3032.
  • Yamamoto K, Fujimatsu I, Komatsu K. Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng. 1992;73(6):425–430.
  • Nageshwar YVD, Sheelu G, Shambhu RR, et al. Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng. 2011;34(5):515–523.
  • Zhang ZJ, Xu JH, He YC, et al. Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(−)-mandelic acid production. Bioprocess Biosyst Eng. 2011;34(3):315–322.
  • Shen M, Liu Z, Zheng Y, et al. Enhancing endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioproc E. 2009;14(6):795–802.
  • Shen M, Zheng Y, Shen Y. Isolation and characterization of a novel Arthrobacter nitroguajacolicus ZJUTB06-99, capable of converting acrylonitrile to acrylic acid. Process Biochem. 2009;44(7):781–785.
  • Chen J, Zheng YG, Shen YC. Biosynthesis of p-methoxyphenylacetic acid from p-methoxyphenylacetonitrile by immobilized Bacillus subtilis ZJB-063. Process Biochem. 2008;43(9):978–983.
  • Chen J, Zheng YG, Shen YC. Biotransformation of p-methoxyphenylacetonitrile into p-methoxyphenylacetic acid by resting cells of Bacillus subtilis. Biotechnol Appl Biochem. 2008;50(3):147–153.
  • Almatawah QA, Cramp R, Cowan DA. Characterization of an inducible nitrilase from a thermophilic bacillus. Extremophiles. 1999;3(4):283–291.
  • Cramp R, Gilmour M, Cowan DA. Novel thermophilic bacteria producing nitrile-degrading enzymes. Microbiology. 1997;143(7):2313–2320.
  • Kamila S, Zhu D, Biehl ER, et al. Unexpected stereorecognition in nitrilase-catalyzed hydrolysis of beta-hydroxy nitriles. Org Lett. 2006;8(20):4429–4431.
  • Gradley ML, Deverson CJF, Knowles CJ. Asymmetric hydrolysis of R-(−),S(+)-2-methylbutyronitrile by Rhodococcus rhodochrous NCIMB 11216. Arch Microbiol. 1994;161(3):246–251.
  • Lévy-Schil S, Soubrier F, Crutz-Le Coq AM, et al. Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.: gene cloning and overexpression, purification and primary structure. Gene. 1995;161(1):15–20.
  • Agarkar VB, Kimani SW, Cowan DA, et al. The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;62(Pt 12):1174–1178.
  • Williamson DS, Dent K, Weber B, et al. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8. Appl Microbiol Biotechnol. 2010;88(1):143–153.
  • Singh RV, Sharma H, Koul A, et al. Exploring a broad spectrum nitrilase from moderately halophilic bacterium Halomonas sp. IIIMB2797 isolated from saline lake. J Basic Microbiol. 2018;58(10):867–874.
  • Chmura A, Shapovalova AA, Van Pelt S, et al. Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Appl Microbiol Biotechnol. 2008;81(2):371–378.
  • Zhang ZJ, Cai RF, Xu JH. Characterization of a new nitrilase from Hoeflea phototrophica DFL-43 for a two-step one-pot synthesis of (S)-beta-amino acids. Appl Microbiol Biot. 2018;102:6047–6056.
  • Stalker DM, Malyj LD, Mcbride KE. Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. J Biol Chem. 1988;263(13):6310–6314.
  • Serra I, Capusoni C, Molinari F, et al. Marine microorganisms for biocatalysis: selective hydrolysis of nitriles with a salt-resistant strain of Meyerozyma guilliermondii. Mar Biotechnol. 2019;21(2):229–239.
  • Harper DB. Characterization of a nitrilase from Nocardia sp. (Rhodochrous group) N.C.I.B. 11215, Using p-hydroxybenzonitrile as sole carbon source. Int J Biochem. 1985;17(6):677–683.
  • Hoyle AJ, Bunch AW, Knowles CJ. The nitrilases of Rhodococcus rhodochrous NCIMB 11216. Enzyme Microb Tech. 1998;23(7-8):475–482.
  • Bhalla TC, Kumar H. Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol. 2005;51(8):705–708.
  • Raj J, Singh N, Prasad S, et al. Bioconversion of benzonitrile to benzoic acid using free and agar entrapped cells of Nocardia Globerula NHB-2. Acta Microbiol Imm H. 2007;54(1):79–88.
  • Liu D, Xi L, Han D, et al. Cloning, expression, and characterization of a novel nitrilase, PaCNit, from Pannonibacter carbonis Q4.6. Biotechnol Lett. 2019;41(4-5):583–589.
  • Raczynska JE, Vorgias CE, Antranikian G, et al. Crystallographic analysis of a thermoactive nitrilase. J Struct Biol. 2011;173(2):294–302.
  • Alonso FO, Antunes O, Oestreicher EG. Enantiomerically pure D-phenylglycine production using immobilized Pseudomonas aeruginosa 10145 in calcium alginate beads. J Braz Chem Soc. 2007;18(3):566–571.
  • Alonso FOM, Oestreicher EG, Antunes OAC. Production of enantiomerically pure D-phenylglycine using Pseudomonas aeruginosa 10145 as biocatalyst. Braz J Chem Eng. 2008;25(1):1–8.
  • Kim J, Tiwari MK, Moon H, et al. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol. 2009;83(2):273–283.
  • Layh N, Parratt JS, Willetts A. Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. J Mol Catal B-Enzym. 1998;5(5-6):467–474.
  • Banerjee A, Kaul P, Banerjee U. Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol. 2006;184(6):407–418.
  • Kobayashi M, Nagasawa T, Yamada H. Nitrilase of Rhodococcus rhodochrous J1. Febs J. 1989;182:349–356.
  • Nagasawa T, Wieser M, Nakamura T, et al. Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Febs J. 2000;267:138–144.
  • Bhalla TC, Miura A, Wakamoto A, et al. Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34. Appl Microbiol Biot. 1992;37:184–190.
  • Bhalla T, Aoshima M, Misawa S, et al. The molecular cloning and sequencing of the nitrilase gene of Rhodococcus rhodochrous PA-34. Acta Biotechnol. 1995;15(3):297–306.
  • Kobayashi M, Yanaka N, Nagasawa T, et al. Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol. 1990;172(9):4807–4815.
  • Prasad S, Misra A, Jangir VP, et al. A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol. 2007;23(3):345–353.
  • Khandelwal AK, Nigam VK, Choudhury B, et al. Optimization of nitrilase production from a new thermophilic isolate. J Chem Technol Biotechnol. 2007;82(7):646–651.
  • Nigam VK, Khandelwal AK, Gothwal RK, et al. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci. 2009;34(1):21–26.
  • Kaplan O, Vejvoda V, Plihal O, et al. Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol. 2006;73(3):567–575.
  • Snajdrova R, Kristovamylerova V, Crestia D, et al. Nitrile biotransformation by Aspergillus niger. J Mol Catal B-Enzym. 2004;29:227–232.
  • Vejvoda V, Kaplan O, Bezouska K, et al. Purification and characterization of a nitrilase from Fusarium solani O1. J Mol Catal B-Enzym. 2008;50(2-4):99–106.
  • Goldlust A, Bohak Z. Induction, purification, and characterization of the nitrilase of Fusarium oxysporum sp. Melonis. Biotechnol Appl Bioc. 1989;11:581–601.
  • Vejvoda V, Kubac D, Davidova A, et al. Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem. 2010;45(7):1115–1120.
  • Wajant H, Effenberger F. Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Febs J. 2002;269:680–687.
  • Zhang Q, Wu ZM, Hao CL, et al. Highly regio- and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase. Appl Microbiol Biotechnol. 2019;103(14):5617–5626.
  • Dennett G, Blamey JM. A new thermophilic nitrilase from an antarctic hyperthermophilic microorganism. Front Bioeng Biotech. 2016;4:5
  • Nigam VAA, Sharma M, et al. Bioconversion of 3-cyanopyridine to nicotinic acid by a thermotable nitrilase. Res J Biotech. 2009;4:32–36.
  • Xue Y, Liu Z, Xu M, et al. Enhanced biotransformation of (R,S)-mandelonitrile to (R)-(−)-mandelic acid with in situ production removal by addition of resin. Biochem Eng J. 2010;53(1):143–149.
  • Thuku RN, Weber B, Varsani A, et al. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. Febs J. 2007;274(8):2099–2108.
  • Zhang L, Yin B, Wang C, et al. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J Struct Biol. 2014;188(2):93–101.
  • Bork P, Koonin EV. A new family of carbon-nitrogen hydrolases. Protein Sci. 1994;3(8):1344–1346.
  • Nakai T, Hasegawa T, Yamashita E, et al. Crystal structure of N-carbamyl-d-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure. 2000;8(7):729–738.
  • Kobayashi M, Komeda H, Yanaka N, et al. Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem. 1992;267(29):20746–20751.
  • Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, et al. Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol. 2011;77(16):5761–5769.
  • Weber B, Kimani S, Varsani A, et al. The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning. J Biol Chem. 2013;288(40):28514–28523.
  • Fernandes BCM, Mateo C, Kiziak C, et al. Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal. 2006;348(18):2597–2603.
  • Schreiner U, Steinkellner G, Rozzell JD, et al. Improved fitness of Arabidopsis Thaliana nitrilase 2. Chemcatchem. 2010;2(3):263–267.
  • Liu ZQ, Baker PJ, Cheng F, et al. Screening and improving the recombinant nitrilases and application in biotransformation of iminodiacetonitrile to iminodiacetic acid. Plos One. 2013;8(6):e67197.
  • Schreiner U, Hecher B, Obrowsky S, et al. Directed evolution of Alcaligenes faecalis nitrilase. Enzyme Microb Tech. 2010;47(4):140–146.
  • Sheldon RA. Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev. 2011;15:159–181.
  • Mateo C, Palomo JM, Van Langen LM, et al. A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng. 2004;86(3):273–276.
  • Xu Z, Cai T, Xiong N, et al. Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme Microb Tech. 2018;113:52–58.
  • Vejvoda V, Kaplan O, Kubac D, et al. Immobilization of fungal nitrilase and bacterial amidase – two enzymes working in accord. Biocatal Biotransfor. 2006;24(6):414–418.
  • Reetz MT, José Daniel C. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc. 2007;2(4):891–903.
  • Chen Z, Jiang S, Wang H, et al. Switching the regioselectivity of two nitrilases toward succinonitrile by mutating the active center pocket key residues through a semi-rational engineering. Chem Commun (Camb).). 2019;55(20):2948–2951.
  • Whitehouse CJC, Bell SG, Wong LL. P450BM3 (CYP102A1): connecting the dots. Chem Soc Rev. 2012;41(3):1218–1260.
  • Currin A, Swainston N, Day PJ, et al. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev. 2015;44(5):1172–1239.
  • Liu Z, Lu M, Zhang X, et al. Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. Int J Biol Macromol. 2018;116:563–571.
  • Dong T, Gong J, Gu B, et al. Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour Technol. 2017;244(Pt 1):1104–1110.
  • Jyoti Bhatia K, Chauhan K, et al. Improving stability and reusability of Rhodococcus pyridinivorans NIT-36 nitrilase by whole cell immobilization using chitosan. Int J Biol Macromol. 2017;103:8–15.
  • Chen H, Chen Z, Ni Z, et al. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B-Enzym. 2016;123:73–80.
  • Jin L, Guo D, Li Z, et al. Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. J Ind Microbiol Biotechnol. 2016;43(5):585–593.
  • Xu Z, Huang JW, Xia CJ, et al. Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile. Int J Biol Macromol. 2019;130:117–124.
  • Xue Y, Xu M, Chen H, et al. A novel integrated bioprocess for efficient production of (R)-(−)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev. 2013;17(2):213–220.
  • Liu Z, Zhou M, Zhang X, et al. Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol. 2012;22(1):35–47.
  • Jamwal S, Dautoo UK, Ranote S, et al. Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol. 2019;131:117–126.
  • Shen M, Zheng Y, Liu Z, et al. Production of acrylic acid from acrylonitrile by immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99. J Microbiol Biotechn. 2009;19:582–587.
  • Sheldon RA. Cross-linked enzyme aggregates (CLEAs): Stable and recyclable biocatalysts. Biochem Soc T. 2007;35(6):1583–1587.
  • Kaul P, Stolz A, Banerjee UC. Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis. Adv Synth Catal. 2007;349(13):2167–2176.
  • Kumar S, Mohan U, Kamble AL, et al. Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresource Technol. 2010;101(17):6856–6858.
  • Swartz JD, Miller SA, Wright DW. Rapid production of nitrilase containing silica nanoparticles offers an effective and reusable biocatalyst for synthetic nitrile hydrolysis. Org Process Res Dev. 2009;13(3):584–589.
  • Detzel C, Maas R, Jose J. Autodisplay of nitrilase from Alcaligenes faecalis in E. coli yields a whole cell biocatalyst for the synthesis of enantiomerically pure (R)-mandelic acid. Chemcatchem. 2011;3(4):719–725.
  • Detzel C, Maas R, Tubeleviciute A, et al. Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds. Appl Microbiol Biotechnol. 2013;97(11):4887–4896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.