2,609
Views
73
CrossRef citations to date
0
Altmetric
Review Articles

Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective

ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 94-120 | Received 17 Nov 2019, Accepted 03 Aug 2020, Published online: 18 Oct 2020

References

  • Guan A, Hamilton P, Wang Y, et al. Medical devices on chips. Nat Biomed Eng. 2017;1(3):10.
  • U.S.F.D. Administration, overview of regulatory requirements: medical devices – transcript; 2018. [Accessed 2018 Oct 26]. https://www.fda.gov/Training/CDRHLearn/ucm281656.htm.
  • Phillips KS, Patwardhan D, Jayan G. Biofilms, medical devices, and antibiofilm technology: key messages from a recent public workshop. Am J Infect Control. 2015;43(1):2–3.
  • Vertes A, Hitchins V, Phillips KS. Analytical challenges of microbial biofilms on medical devices. Anal Chem. 2012;84(9):3858–3866.
  • Costa F, Carvalho IF, Montelaro RC, et al. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011;7(4):1431–1440.
  • Cheng H, Li Y, Huo K, et al. Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J Biomed Mater Res A. 2014;102(10):3488–3499.
  • Onaizi SA, Leong SS. Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv. 2011;29(1):67–74.
  • Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–1429.
  • Bargon R, Bruenke J, Carli A, et al. General assembly, research caveats: proceedings of international consensus on orthopedic infections. J Arthroplasty. 2019;34(2S):S245–S253.e1.
  • Klevens RM, Edwards JR, Richards CL, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122(2):160–166.
  • Costerton JW, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322.
  • Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45(4):999–1007.
  • Klevens RM, Edwards JR, Richards CL, Jr, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160–166.
  • Wang Y, Jayan G, Patwardhan D, et al. Antimicrobial and anti-biofilm medical devices: public health and regulatory science challenges. In: Antimicrobial coatings and modifications on medical devices. Cham: Springer; 2017. pp. 37–65.
  • Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33(11):637–652.
  • Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013;31(5):295–304.
  • Rivas L, Luque-Ortega JR, Andreu D. Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta. 2009;1788(8):1570–1581.
  • Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30(7):505–515.
  • Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, et al. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135(1):1–11.
  • Hamamoto K, Kida Y, Zhang Y, et al. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol. 2002;46(11):741–750.
  • Hancock RE, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–1557.
  • Matanic VCA, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents. 2004;23(4):382–389.
  • Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198(1):169–184.
  • Cherkasov A, Hilpert K, Jenssen H, et al. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol. 2009;4(1):65–74.
  • Hussain R, Joannou CL, Siligardi G. Identification and characterization of novel lipophilic antimicrobial peptides derived from naturally occurring proteins. Int J Pept Res Ther. 2006;12(3):269–273.
  • Lin Y-M, Wu S-J, Chang T-W, et al. Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J Biol Chem. 2010;285(12):8985–8994.
  • Piper C, Draper LA, Cotter PD, et al. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother. 2009;64(3):546–551.
  • Tzou P, Reichhart J-M, Lemaitre B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci Usa. 2002;99(4):2152–2157.
  • Riool M, de Breij A, Drijfhout JW, et al. Antimicrobial peptides in biomedical device manufacturing. Front Chem. 2017;5:63.
  • VentureRadar. Top Antimicrobial Peptides Companies. Available from: https://www.ventureradar.com/keyword/Antimicrobial%20Peptides
  • I.P. REPORTS. Global anti microbial peptides market - outlook 2024 global opportunity and demand analysis market forecast 2016 2024.; 2020. Available from: https://www.goldsteinresearch.com/report/anti-microbial-peptides-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024
  • Molchanova N, Hansen PR, Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22(9):1430.
  • G.M. Intelligence. Global anti microbial peptides market report 2030: based on peptides type, based on products, based on application & by region with COVID-19 impact | Forecast Period 2017–2030; 2020. Available from: https://www.goldsteinresearch.com/report/anti-microbial-peptides-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024.
  • Moriarty TF, Grainger DW, Richards RG. Challenges in linking preclinical anti-microbial research strategies with clinical outcomes for device-associated infections. Eur Cell Mater. 2014;28:112–128.
  • Di Luca M, Maccari G, Nifosì R. Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. Pathog Dis. 2014;70(3):257–270.
  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–250.
  • Hancock REW, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA. 2000;97(16):8856–8861.
  • Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13(1):61–92.
  • Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–395.
  • Hartmann M, Berditsch M, Hawecker J, et al. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother. 2010;54(8):3132–3142.
  • Aoki W, Ueda M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals. 2013;6(8):1055–1081.
  • Hurdle JG, O'Neill AJ, Chopra I, et al. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol. 2011;9(1):62–75.
  • Mok WW, Li Y. Therapeutic peptides: new arsenal against drug resistant pathogens. Curr Pharm Des. 2014;20(5):771–792.
  • Laverty G, Gorman SP, Gilmore BF. The potential of antimicrobial peptides as biocides. Int J Mol Sci. 2011;12(10):6566–6596.
  • Jean-François F, Elezgaray J, Berson P, et al. Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophys J. 2008;95(12):5748–5756.
  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29(9):464–472.
  • Afacan NJ, Yeung ATY, Pena OM, et al. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des. 2012;18(6):807–819.
  • Nicolas P. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J. 2009;276(22):6483–6496.
  • Takahashi D, Shukla SK, Prakash O, et al. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010;92(9):1236–1241.
  • Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758(9):1184–1202.
  • Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e216–e230.
  • Fjell CD, Jenssen H, Hilpert K, et al. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem. 2009;52(7):2006–2015.
  • Hancock REW. Peptide antibiotics. Lancet. 1997;349(9049):418–422.
  • Hancock REW, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol. 2012;10(4):243–254.
  • Jacobsen AS, Jenssen H. Human cathelicidin LL-37 prevents bacterial biofilm formation. Future Med Chem. 2012;4(12):1587–1599.
  • Elssner A, Duncan M, Gavrilin M, et al. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol. 2004;172(8):4987–4994.
  • Mookherjee N, Hamill P, Gardy J, et al. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol Biosyst. 2009;5(5):483–496.
  • Davidson DJ, Currie AJ, Reid GSD, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004;172(2):1146–1156.
  • Grassi L, Maisetta G, Esin S, et al. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 2017;8:2409–2409.
  • de la Fuente-Núñez C, Korolik V, Bains M, et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother. 2012;56(5):2696–2704.
  • de la Fuente-Núñez C, Mansour SC, Wang Z, et al. Anti-biofilm and immunomodulatory activities of peptides that inhibit biofilms formed by pathogens isolated from cystic fibrosis patients. Antibiotics. 2014;3(4):509–526.
  • Molhoek EM, van Dijk A, Veldhuizen EJ, et al. A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms. Int J Antimicrob Agents. 2011;37(5):476–479.
  • Nagant C, Pitts B, Nazmi K, et al. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother. 2012;56(11):5698–5708.
  • Haisma EM, de Breij A, Chan H, et al. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother. 2014;58(8):4411–4419.
  • Gopal R, Lee JH, Kim YG, et al. Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs. 2013;11(6):1836–1852.
  • Mataraci E, Dosler S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2012;56(12):6366–6371.
  • Segev-Zarko L-a, Saar-Dover R, Brumfeld V, et al. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem J. 2015;468(2):259–270.
  • Mansour SC, de la Fuente-Núñez C, Hancock REW. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci. 2015;21(5):323–329.
  • Wang Z, de la Fuente-Núñez C, Shen Y, et al. Treatment of oral multispecies biofilms by an anti-biofilm peptide. PLoS One. 2015;10(7):e0132512.
  • de la Fuente-Núñez C, Reffuveille F, Mansour SC, et al. D-Enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 2015;22(2):196–205.
  • Ribeiro SM, de la Fuente-Núñez C, Baquir B, et al. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrob Agents Chemother. 2015;59(7):3906–3912.
  • Advincula RC, Brittain WJ, Caster KC, et al. Polymer brushes. Wiley Online Library; 2004.
  • Abbasizadeh N, Rezayan AH, Nourmohammadi J, et al. HHC-36 antimicrobial peptide loading on silk fibroin (SF)/hydroxyapatite (HA) nanofibrous-coated titanium for the enhancement of osteoblast and bactericidal functions. Int J Polym Mater. 2020;69(10):629–639.
  • Glinel K, Jonas AM, Jouenne T, et al. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem. 2009;20(1):71–77.
  • Khoshnoud F, De Silva CW. Recent advances in MEMS sensor technology-mechanical applications, instrumentation & measurement magazine. IEEE Instrum Meas Mag. 2012;15(2):14–24.
  • Sun H, Hong Y, Xi Y, et al. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules. 2018;19(6):1701–1720.
  • Song A, Rane AA, Christman KL. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing. Acta Biomater. 2012;8(1):41–50.
  • Gao G, Lange D, Hilpert K, et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011;32(16):3899–3909.
  • Gao G, Yu K, Kindrachuk J, et al. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules. 2011;12(10):3715–3727.
  • Shukla A, Fleming KE, Chuang HF, et al. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010;31(8):2348–2357.
  • Xu D, Yang W, Hu Y, et al. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses. Colloids Surf B. 2013;110:225–235.
  • Santos CM, Kumar A, Kolar SS, et al. Immobilization of antimicrobial peptide IG-25 onto fluoropolymers via fluorous interactions and click chemistry. ACS Appl Mater Interfaces. 2013;5(24):12789–12793.
  • Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci. 2000;25(5):677–710.
  • Ayres N. Polymer brushes: applications in biomaterials and nanotechnology, Polymer Chemistry. Polym Chem. 2010;1(6):769–777.
  • Godoy-Gallardo M, Mas-Moruno C, Yu K, et al. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization. Biomacromolecules. 2015;16(2):483–496.
  • Mishra B, Basu A, Chua RRY, et al. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens. J Mater Chem B. 2014;2(12):1706–1716.
  • Muszanska AK, Rochford ET, Gruszka A, et al. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules. 2014;15(6):2019–2026.
  • Cheng H, Yue K, Kazemzadeh-Narbat M, et al. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces. 2017;9(13):11428–11439.
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–430.
  • Lim K, Chua RR, Bow H, et al. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater. 2015;15:127–138.
  • Tan XW, Goh TW, Saraswathi P, et al. Effectiveness of antimicrobial peptide immobilization for preventing perioperative cornea implant-associated bacterial infection. Antimicrob Agents Chemother. 2014;58(9):5229–5238.
  • Willcox M, Holden B. Contact lens related corneal infections. Biosci Rep. 2001;21(4):445–461.
  • Wu P, Stapleton F, Willcox M. The causes of and cures for contact lens-induced peripheral ulcer. Eye Contact Lens. 2003;29(1 Suppl):S63–S66.
  • Szczotka-Flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens. 2010;36(2):116–129.
  • Anne D, Heïdi B, Yves M, et al. Fabrication and characterization of contact lenses bearing surface‐immobilized layers of intact liposomes. J Biomed Mater Res A. 2007;82(1):41–51.
  • Willcox MD, Hume EB, Aliwarga Y, et al. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol. 2008;105(6):1817–1825.
  • Cole N, Hume EB, Vijay AK, et al. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest Ophthalmol Vis Sci. 2010;51(1):390–395.
  • Dutta D, Ozkan J, Willcox MD. Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom Vis Sci. 2014;91(5):570–581.
  • Dutta D, Cole N, Kumar N, et al. Broad spectrum antimicrobial activity of melimine covalently bound to contact lensesantimicrobial activity of melimine contact lenses. Invest Ophthalmol Vis Sci. 2013;54(1):175–182.
  • Wohl BM, Engbersen JF. Responsive layer-by-layer materials for drug delivery. J Control Release. 2012;158(1):2–14.
  • Zelikin AN. Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano. 2010;4(5):2494–2509.
  • Cauda R. Candidaemia in patients with an inserted medical device. Drugs. 2009;69(1):33–38.
  • Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12(4):501–517.
  • Karlsson AJ, Pomerantz WC, Neilsen KJ, et al. Effect of sequence and structural properties on 14-helical beta-peptide activity against Candida albicans planktonic cells and biofilms . ACS Chem Biol. 2009;4(7):567–579.
  • Karlsson AJ, Pomerantz WC, Weisblum B, et al. Antifungal activity from 14-helical beta-peptides. J Am Chem Soc. 2006;128(39):12630–12631.
  • Raman N, Lee M-R, Palecek SP, et al. Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes. J Control Release. 2014;191:54–62.
  • Nandakumar A, Yang L, Habibovic P, et al. Calcium phosphate coated electrospun fiber matrices as scaffolds for bone tissue engineering. Langmuir. 2010;26(10):7380–7387.
  • Sokolova VV, Radtke I, Heumann R, et al. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials. 2006;27(16):3147–3153.
  • Peter B, Pioletti DP, Laib S, et al. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60.
  • Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465–1485.
  • Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8(4):1401–1421.
  • Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials. 2010;31(36):9519–9526.
  • Kazemzadeh-Narbat M, Noordin S, Masri BA, et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res Part B Appl Biomater. 2012;100(5):1344–1352.
  • Yucesoy DT, Hnilova M, Boone K, et al. Chimeric peptides as implant functionalization agents for titanium alloy implants with antimicrobial properties. JOM. 2015;67(4):754–766.
  • Kazemzadeh-Narbat M, Lai BF, Ding C, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34(24):5969–5977.
  • Kazemzadeh-Narbat M, Wang Q, Hancock REW, et al. Antimicrobial peptide delivery from trabecular bone grafts. J Biomater Tissue Eng. 2014;4(11):967–972.
  • Kazemzadeh-Narbat M, Wang Q, Hancock RE, et al. Antimicrobial peptide delivery from trabecular bone grafts. J Biomater Tissue Eng. 2014;4(11):967–972.
  • Tian J, Shen S, Zhou C, et al. Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and antimicrobial peptide. J Mater Sci Mater Med. 2015;26(2):66
  • Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res Part B Appl Biomater. 2009;91(1):470–480.
  • Gabriel M, Nazmi K, Veerman EC, et al. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem. 2006;17(2):548–550.
  • Chen X, Hirt H, Li Y, et al. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS One. 2014;9(11):e111579.
  • Chen R, Willcox MD, Ho KKK, et al. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials. 2016;85:142–151.
  • Makihira S, Shuto T, Nikawa H, et al. Titanium immobilized with an antimicrobial peptide derived from histatin accelerates the differentiation of osteoblastic cell line, MC3T3-E1. IJMS. 2010;11(4):1458–1470.
  • de Breij A, Riool M, Kwakman PHS, et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release. 2016;222:1–8.
  • Hequet A, Humblot V, Berjeaud JM, et al. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf B Biointerfaces. 2011;84(2):301–309.
  • Baneyx F, Schwartz DT. Selection and analysis of solid-binding peptides. Curr Opin Biotechnol. 2007;18(4):312–317.
  • Sano K-I, Sasaki H, Shiba K. Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir. 2005;21(7):3090–3095.
  • Yoshinari M, Kato T, Matsuzaka K, et al. Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling. 2010;26(1):103–110.
  • Liu Z, Ma S, Duan S, et al. Modification of titanium substrates with chimeric peptides comprising antimicrobial and titanium-binding motifs connected by linkers to inhibit biofilm formation. ACS Appl Mater Interfaces. 2016;8(8):5124–5136.
  • Yazici H, O'Neill MB, Kacar T, et al. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl Mater Interfaces. 2016;8(8):5070–5081.
  • Song Y-Y, Schmidt-Stein F, Bauer S, et al. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc. 2009;131(12):4230–4232.
  • Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24):5706–5716.
  • Ma M, Kazemzadeh-Narbat M, Hui Y, et al. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A. 2012;100(2):278–285.
  • Li T, Wang N, Chen S, et al. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. Int J Nanomedicine. 2017;12:2995–3007.
  • Chen X, Zhou XC, Liu S, et al. In vivo osseointegration of dental implants with an antimicrobial peptide coating. J Mater Sci Mater Med. 2017;28(5):76
  • Cleophas RTC, Riool M, Quarles van Ufford HC, et al. Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using Thiol–ene click chemistry. ACS Macro Lett. 2014;3(5):477–480.
  • Nie B, Ao H, Zhou J, et al. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation, colloids and surfaces. Colloids Surf B Biointerfaces. 2016;145:728–739.
  • Yu K, Lo JCY, Yan M, et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials. 2017;116:69–81.
  • De Zoysa GH, Sarojini V. Feasibility study exploring the potential of novel battacin lipopeptides as antimicrobial coatings. ACS Appl Mater Interfaces. 2017;9(2):1373–1383.
  • Vreuls C, Zocchi G, Garitte G, et al. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications. Biofouling. 2010;26(6):645–656.
  • Wang Q, Uzunoglu E, Wu Y, et al. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces. ACS Appl Mater Interfaces. 2012;4(5):2498–2506.
  • Lim K, Chua RR, Saravanan R, et al. Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces. 2013;5(13):6412–6422.
  • Li X, Li P, Saravanan R, et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater. 2014;10(1):258–266.
  • Andrea A, Molchanova N, Jenssen H. Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules. 2018;8(2):27.
  • Cleophas RTC, Sjollema J, Busscher HJ, et al. Characterization and activity of an immobilized antimicrobial peptide containing bactericidal PEG-hydrogel. Biomacromolecules. 2014;15(9):3390–3395.
  • Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan-a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta. 2009;1788(8):1680–1686.
  • Achi S, Halami PM. Antimicrobial peptides from Baccilus Spp.: use in antimicrobial packaging. In: Barros-Velazquez J, editor. Antimicrobial food packaging. USA: Academic Press; 2016.
  • Soares JW, Kirby R, Doherty LA, et al. Immobilization and orientation-dependent activity of a naturally occurring antimicrobial peptide. J Pept Sci. 2015;21(8):669–679.
  • Sun L. Thermal spray coatings on orthopedic devices: when and how the FDA reviews your coatings. J Therm Spray Tech. 2018;27(8):1280–1290.
  • McDermott MK, Saylor DM, Casas R, et al. Microstructure and elution of tetracycline from block copolymer coatings. J Pharm Sci. 2010;99(6):2777–2785.
  • Kim CS, Saylor DM, McDermott MK, et al. Modeling solvent evaporation during the manufacture of controlled drug-release coatings and the impact on release kinetics. J Biomed Mater Res Part B Appl Biomater. 2009;90(2):688–699.
  • McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release. 2015;217:327–336.
  • Wen X, Gehring R, Stallbaumer A, et al. Limitations of MIC as sole metric of pharmacodynamic response across the range of antimicrobial susceptibilities within a single bacterial species. Sci Rep. 2016;6(1):37907
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Rodrigues LR. Inhibition of bacterial adhesion on medical devices. In: GA Linke D, Goldman A, editor. Bacterial adhesion. Advances in experimental medicine and biology. Dordrecht: Springer; 2011.
  • Wang Y, Guan A, Isayeva I, et al. Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials. 2016;95:74–85.
  • FDA, Content and Format of Premarket Notification [510(k)] Submissions for Liquid Chemical Sterilants/High Level Disinfectants; 2000. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-and-format-premarket-notification-510k-submissions-liquid-chemical-sterilantshigh-level
  • Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol. 1957;38(6):573–586.
  • Wang Y, Leng V, Patel V, et al. Injections through skin colonized with Staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci Rep. 2017;7:45070.
  • Wang Y, Tan X, Xi C, et al. Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. NPJ Biofilms Microbiomes. 2018;4(1):16
  • Xie S-X, Song L, Yuca E, et al. Antimicrobial peptide–polymer conjugates for dentistry. ACS Appl Polym Mater. 2020;2(3):1134–1144.
  • Turner A, Radburn-Smith K, Mushtaq A, et al. Storage and Handling Guidelines for Custom Peptides. Curr Protoc Protein Sci. 2011;64(1):18.12.1–18.12.7.
  • Strömstedt AA, Pasupuleti M, Schmidtchen A, et al. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53(2):593–602.
  • Yu Q, Cho J, Shivapooja P, et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces. 2013;5(19):9295–9304.
  • Parvizi J, Antoci V, Hickok NJ, et al. Selfprotective smart orthopedic implants. Expert Rev Med Devices. 2007;4(1):55–64.
  • Shchukin D, Möhwald H. Materials science. A coat of many functions. Science. 2013;341(6153):1458–1459.
  • Holzapfel BM, Reichert JC, Schantz J-T, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev. 2013;65(4):581–603.
  • Park HY, Xi W, Zhu S, et al. Smart” polymer coating prevents spinal implant infection in a mouse model of spine surgery. Spine J. 2017;17(10):S168.,
  • Mostafalu P, Kiaee G, Giatsidis G, et al. A textile dressing for temporal and dosage controlled drug delivery. Adv Funct Mater. 2017;27(41):1702399.
  • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849–13880.
  • Lewis F, Cloutier M, Chevallier P, et al. Influence of the 316 L stainless steel interface on the stability and barrier properties of plasma fluorocarbon films. ACS Appl Mater Interfaces. 2011;3(7):2323–2331.
  • Cloutier M, Harnagea C, Hale P, et al. Long-term stability of hydrogenated DLC coatings: effects of aging on the structural, chemical and mechanical properties. Diamond Relat Mater. 2014;48:65–72.
  • Vasilev K, Griesser SS, Griesser HJ. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Processes Polym. 2011;8(11):1010–1023.
  • Rajchakit U, Sarojini V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem. 2017;28(11):2673–2686.
  • Pal I, Bhattacharyya D, Kar RK, et al. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci Rep. 2019;9(1):4485
  • Rai A, Pinto S, Velho TR, et al. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials. 2016;85:99–110.
  • Peng LH, Huang YF, Zhang CZ, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016;103:137–149.
  • Porto WF, Irazazabal L, Alves ESF, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun. 2018;9(1):1490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.