621
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Insight into the effects and biotechnological production of kestoses, the smallest fructooligosaccharides

, , , , &
Pages 34-46 | Received 19 Feb 2020, Accepted 01 Sep 2020, Published online: 05 Nov 2020

References

  • Kaplan H, Hutkins RW. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol. 2000;66(6):2682–2684.
  • Smith PB. Safety of short-chain fructooligosaccharides and GRAS affirmation by the US FDA. Biosci Microflora. 2002;21(1):27–29.
  • Shimomura Y, Tochio T, Kitaura Y, et al. Effects of 1-Kestose feeding on cecal microbiota which produce lactate and short-chain fatty acids and on blood components in rats. Faseb J. 2017;31:892–893.
  • Kim H-J, Lee S-H, Go H-N, et al. Effects of kestose on gut mucosal immunity in an atopic dermatitis mouse model. J Dermatol Sci. 2018;89(1):27–32.
  • Vega R, Zúniga-Hansen M. Enzymatic synthesis of fructooligosaccharides with high 1-kestose concentrations using response surface methodology. Bioresour Technol. 2011;102(22):10180–10186.
  • Jirayucharoensak R, Khuenpet K, Jittanit W, et al. Physical and chemical properties of powder produced from spray drying of inulin component extracted from Jerusalem artichoke tuber powder. Drying Technol. 2019;37(10):1215–1227.
  • Petkova N, Ivanov I, Vrancheva R, et al. Ultrasound and microwave-assisted extraction of elecampane (Inula helenium) roots. Nat Prod Commun. 2017;12(2):171–174.
  • Matías J, González J, Royano L, et al. Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy. 2011;35(5):2006–2012.
  • Livingston DP, Hincha DK, Heyer AG. Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci. 2009;66(13):2007–2023.
  • Tochio T, Kadota Y, Tanaka T, et al. 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as bifidobacteria in humans. Foods. 2018;7(9):140.
  • Taştan Ö, Sözgen G, Baysal T, et al. Production of prebiotic 6-kestose using Zymomonas mobilis levansucrase in carob molasses and its effect on 5-HMF levels during storage. Food Chem. 2019;297:124897.
  • Ueno K, Sonoda T, Yoshida M, et al. Purification, characterization, and functional analysis of a novel 6G&1-FEH mainly hydrolyzing neokestose from asparagus. J Exp Bot. 2018;69(18):4295–4308.
  • Nobre C, do Nascimento AKC, Silva SP, et al. Process development for the production of prebiotic fructo-oligosaccharides by Penicillium citreonigrum. Bioresour Technol. 2019;282:464–474.
  • Crittenden R, Doelle H. Structural identification of oligosaccharides produced by Zymomonas mobilis levansucrase. Biotechnol Lett. 1993;15(10):1055–1060.
  • Ko H, Bae J-H, Sung BH, et al. Microbial production of medium chain fructooligosaccharides by recombinant yeast secreting bacterial inulosucrase. Enzyme Microb Technol. 2019;130:109364.
  • Mao W, Han Y, Wang X, et al. A new engineered endo-inulinase with improved activity and thermostability: application in the production of prebiotic fructo-oligosaccharides from inulin. Food Chem. 2019;294:293–301.
  • Van den Ende W. Novel fructan exohydrolase: unique properties and applications for human health. J Exp Bot. 2018;69(18):4227–4231.
  • Paul K. Dietitians Association of Australia response to FSANZ on application A1055 Short chain fructo-oligosaccharides; 2013.
  • Sangeetha P, Ramesh M, Prapulla S. Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol. 2005;16(10):442–457.
  • He C, Yang Y, Zhao R, et al. Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study. Appl Microbiol Biotechnol. 2018;102(7):3217–3228.
  • Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, et al. Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol. 2016;36(2):259–267.
  • Khanvilkar SS, Arya SS. Fructooligosaccharides: applications and health benefits. Agro Food Ind Hi-Tech. 2015;26:8–12.
  • Pejin B, Savic AG, Petkovic M, et al. In vitro anti-hydroxyl radical activity of the fructooligosaccharides 1-kestose and nystose using spectroscopic and computational approaches. Int J Food Sci Technol. 2014;49(6):1500–1505.
  • Pejin B, Savic A, Kien-Thai Y, et al. Further in vitro evaluation of antiradical activity of the moss Rhodobryum ontariense tea using EPR and fluorescence spectroscopy. Cryptogamie Bryol. 2014;35(2):173–179.
  • Koga Y, Tokunaga S, Nagano J, et al. Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants. Pediatr Res. 2016;80(6):844–851.
  • Tochio T, Kitaura Y, Nakamura S, et al. An alteration in the cecal microbiota composition by feeding of 1-kestose results in a marked increase in the cecal butyrate content in rats. PloS One. 2016;11(11):e0166850.
  • Endo A, Hirano K, Ose R, et al. Impact of kestose supplementation on the healthy adult microbiota in in vitro fecal batch cultures. Anaerobe. 2020;61:102076.
  • Ide K, Shinohara M, Yamagishi S, et al. Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs. J Vet Med Sci. 2020;82(1):1–8.
  • Watanabe A, Kadota Y, Yokoyama H, et al. Experimental determination of the threshold dose for bifidogenic activity of dietary 1-kestose in rats. Foods. 2019;9(1):4.
  • Suzuki N, Aiba Y, Takeda H, et al. Superiority of 1-kestose, the smallest fructo-oligosaccharide, to a synthetic mixture of fructo-oligosaccharides in the selective stimulating activity on bifidobacteria. Biosci Microflora. 2006;25(3):109–116.
  • Wang S, Pan J, Zhang Z, et al. Investigation of dietary fructooligosaccharides from different production methods: interpreting the impact of compositions on probiotic metabolism and growth. J Funct Foods. 2020;69:103955.
  • Kilian S, Kritzinger S, Rycroft C, et al. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J Microbiol Biotechnol. 2002;18(7):637–644.
  • Van den Ende W, Van Wonterghem D, Dewil E, et al. Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus). Physiol Plant. 1996;98(3):455–466.
  • Chatterton N, Harrison P. Fructan oligomers in Poa ampla. New Phytol. 1997;136(1):3–10.
  • Chatterton N, Harrison P, Thornley W, et al. Structures of fructan oligomers in orchardgrass (Dactylis glomerata L.). J Plant Physiol. 1993;142(5):552–556.
  • Shiomi N. Isolation and identification of 1-kestose and neokestose from onion buibs. J Fac Agric Hokkaido Univ. 1978;58:548–556.
  • Hammer H, Redalieu E, Nilsson IM, et al. The trisaccharide fraction of some plants belonging to the Amaryllidaceae. Acta Chem Scand. 1968;22:197–199.
  • Pejin B, Iodice C, Tommonaro G, et al. Sugar composition of the moss Rhodobryum ontariense (Kindb.) Kindb Nat Prod Res. 2012;26(3):209–215.
  • Zhu Z-Y, Lian H-Y, Si C-L, et al. The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon. Int J Food Sci Nutr. 2012;63(3):338–342.
  • Hellwege EM, Gritscher D, Willmitzer L, et al. Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J. 1997;12(5):1057–1065.
  • Alvaro-Benito M, de Abreu M, Fernández-Arrojo L, et al. Characterization of a beta-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol. 2007;132(1):75–81.
  • Xu Q, Zheng X, Huang M, et al. Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochem. 2015;50(8):1237–1246.
  • Hirabayashi K, Kondo N, Toyota H, et al. Production of the functional trisaccharide 1-kestose from cane sugar molasses using Aspergillus japonicus β-fructofuranosidase. Curr Microbiol. 2017;74(1):145–148.
  • Kurakake M, Masumoto R, Maguma K, et al. Production of fructooligosaccharides by β-fructofuranosidases from Aspergillus oryzae KB. J Agric Food Chem. 2010;58(1):488–492.
  • Tódero LM, Rechia CGV, Guimarães LHS. Guimarães LHS production of short‐chain fructooligosaccharides (scFOS) using extracellular β‐D‐fructofuranosidase produced by Aspergillus thermomutatus. J Food Biochem. 2019;43(8):12937.
  • Aung T, Jiang H, Liu G-L, et al. Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides . Int J Biol Macromol. 2019;130:988–996.
  • Bedzo OK, Trollope K, Gottumukkala LD, et al. Amberlite IRA 900 versus calcium alginate in immobilization of a novel, engineered β-fructofuranosidase for short-chain fructooligosaccharide synthesis from sucrose . Biotechnol Prog. 2019;35(3):e2797.
  • Míguez N, Gimeno-Pérez M, Fernández-Polo D, et al. Immobilization of the β-fructofuranosidase from Xanthophyllomyces dendrorhous by entrapment in polyvinyl alcohol and its application to neo-fructooligosaccharides production. Catalysts. 2018;8(5):201.
  • Nascimento A, Nobre C, Cavalcanti M, et al. Screening of fungi from the genus Penicillium for production of β-fructofuranosidase and enzymatic synthesis of fructooligosaccharides. J Mol Catal B Enzym. 2016;134:70–78.
  • Trollope K, Görgens J, Volschenk H. Semirational directed evolution of loop regions in Aspergillus japonicus β-fructofuranosidase for improved fructooligosaccharide production. Appl Environ Microbiol. 2015;81(20):7319–7329.
  • Chen S-C, Sheu D-C, Duan K-J. Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. J Taiwan Inst Chem Eng. 2014;45(4):1105–1110.
  • Lorenzoni AS, Aydos LF, Klein MP, et al. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym. 2014;103:193–197.
  • Linde D, Rodríguez-Colinas B, Estévez M, et al. Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresour Technol. 2012;109:123–130.
  • Chen J, Chen X, Xu X, et al. Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructooligosaccharides (neo-FOSs). Bioresour Technol. 2011;102(2):1715–1721.
  • Chambert R, Petit-Glatron M. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J. 1991;279(1):35–41.
  • Van Hijum S, van Geel-Schutten G, Rahaoui H, et al. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol. 2002;68(9):4390–4398.
  • Peña-Cardeña A, Rodríguez-Alegría ME, Olvera C, et al. Synthesis of fructooligosaccharides by IslA4, a truncated inulosucrase from Leuconostoc citreum. BMC Biotechnol. 2015;15:2.
  • Rodríguez-Alegría ME, Enciso-Rodríguez A, Ortiz-Soto ME, et al. Fructooligosaccharide production by a truncated Leuconostoc citreum inulosucrase mutant. Biocatal Biotransform. 2010;28(1):51–59.
  • Wang D, Li F-L, Wang S-A. A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym. 2016;151:1220–1226.
  • Silva MF, Rigo D, Mossi V, et al. Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous-organic medium. Food Chem. 2013;138(1):148–153.
  • Ávila-Fernández Á, Olvera-Carranza C, Rudino-Pinera E, et al. Molecular characterization of sucrose: sucrose 1-fructosyltransferase (1-SST) from Agave tequilana Weber Var. azul. Plant Sci. 2007;173:478–486.
  • Lüscher M, Hochstrasser U, Boller T, et al. Isolation of sucrose: sucrose 1-fructosyltransferase (1-SST) from barley (Hordeum vulgare). New Phytol. 2000;145(2):225–232.
  • De Roover J, Vandenbranden K, Van Laere A, et al. Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L. ). Planta. 2000;210:808–814.
  • Nicholson TL. Carbon turnover and sucrose metabolism in the culm of transgenic sugarcane producing 1-kestose [dissertation]. Stellenbosch: University of Stellenbosch; 2007.
  • Rehm J, Willmitzer L, Heyer AG. Production of 1-kestose in transgenic yeast expressing a fructosyltransferase from Aspergillus foetidus. J Bacteriol. 1998;180(5):1305–1310.
  • Di Bartolomeo F, Van den Ende W. Fructose and fructans: opposite effects on health? Plant Foods Hum Nutr. 2015;70(3):227–237.
  • Di Bartolomeo F, Startek J, Van den Ende W. Prebiotics to fight diseases: reality or fiction? Phytother Res. 2013;27(10):1457–1473.
  • Lammens W, Le Roy K, Yuan S, et al. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Plant J. 2012;70(2):205–219.
  • Martınez-Villaluenga C, Frıas J. Production and bioactivity of oligosaccharides in plant foods. In: Moreno FJ, Sanz ML, editors. Food oligosaccharides: production, analysis and bioactivity. Hoboken (NJ): Wiley; 2014. p. 35–54.
  • Sprenger N, Schellenbaum L, van Dun K, et al. Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose: fructan 6-fructosyltransferase. FEBS Lett. 1997;400(3):355–358.
  • Kawakami A, Sato Y, Yoshida M. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot. 2008;59(4):793–802.
  • Wu JS, Chang JY, Chen CW, et al. Neokestose suppresses the growth of human melanoma A2058 cells via inhibition of the nuclear factor-κB signaling pathway . Mol Med Rep. 2017;16(1):295–300.
  • Lee SM, Chang JY, Wu JS, et al. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12(1):1114–1118.
  • Fujishima M, Sakai H, Ueno K, et al. Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytol. 2005;165(2):513–524.
  • Weyens G, Ritsema T, Van Dun K, et al. Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes. Plant Biotechnol J. 2004;2(4):321–327.
  • Lincoln L, More SS. Bacterial invertases: occurrence, production, biochemical characterization, and significance of transfructosylation. J Basic Microbiol. 2017;57(10):803–813.
  • Hayashi S, Kinoshita J, Nonoguchi M, et al. Continous production of 1-kestose by β-fructofuranosidase immobilized onshirasu porous glass. Biotechnol Lett. 1991;13(6):395–398.
  • Zambelli P, Tamborini L, Cazzamalli S, et al. An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides. Food Chem. 2016;190:607–613.
  • de Abreu M, Alvaro-Benito M, Sanz-Aparicio J, et al. Synthesis of 6-kestose using an efficient β-fructofuranosidase engineered by directed evolution. Adv Synth Catal. 2013;355(9):1698–1702.
  • Öner ET, Hernández L, Combie J. Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv. 2016;34(5):827–844.
  • Raga-Carbajal E, Carrillo-Nava E, Costas M, et al. Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase. Glycobiology. 2016;26(4):377–385.
  • Homann A, Biedendieck R, Götze S, et al. Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J. 2007;407(2):189–198.
  • Santos-Moriano P, Fernandez-Arrojo L, Poveda A, et al. Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. J Mol Catal B Enzym. 2015;119:18–25.
  • Bekers M, Laukevics J, Upite D, et al. Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochem. 2002;38(5):701–706.
  • Erdal Ö, Kaplan-Türköz B, Taştan Ö, et al. Levansucrase production by Zymomonas mobilis: optimization of process parameters and fructooligosaccharide production. J Food Biochem. 2017;41(3):e12361.
  • Xu W, Ni D, Zhang W, et al. Recent advances in Levansucrase and Inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr. 2019;59(22):3630–3647.
  • Ozimek LK, Kralj S, Van der Maarel MJ, et al. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology (Reading). 2006;152(Pt 4):1187–1196.
  • Ni D, Xu W, Zhu Y, et al. Inulin and its enzymatic production by inulosucrase: characteristics, structural features, molecular modifications and applications. Biotechnol Adv. 2019;37(2):306–318.
  • Santos AM, Maugeri F. Synthesis of fructooligosaccharides from sucrose using inulinase from Kluyveromyces marxianus. Food Technol Biotechnol. 2007;45:181–186.
  • Karboune S, Appanah N, Khodaei N, et al. Enzymatic synthesis of fructooligosaccharides from sucrose by endo-inulinase-catalyzed transfructosylation reaction in biphasic systems. Process Biochem. 2018;69:82–91.
  • Manoochehri H, Hosseini NF, Saidijam M, et al. A review on invertase: its potentials and applications. Biocatal Agric Biotechnol. 2020;25:101599.
  • Neeraj G, Ravi S, Somdutt R, et al. Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics. Crit Rev Biotechnol. 2018;38(3):409–422.
  • Holyavka M, Artyukhov V, Kovaleva T. Structural and functional properties of inulinases: a review. Biocatal Biotransform. 2016;34(1):1–17.
  • Pijning T, Anwar MA, Böger M, et al. Crystal structure of inulosucrase from Lactobacillus: insights into the substrate specificity and product specificity of GH68 fructansucrases. J Mol Biol. 2011;412(1):80–93.
  • Meng G, Fütterer K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Mol Biol. 2003;10(11):935–941. 2003
  • Nagaya M, Kimura M, Gozu Y, et al. Crystal structure of a β-fructofuranosidase with high transfructosylation activity from Aspergillus kawachii. Biosci Biotechnol Biochem. 2017;81(9):1786–1795.
  • Pouyez J, Mayard A, Vandamme AM, et al. First crystal structure of an endo-inulinase, INU2, from Aspergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endo-activity. Biochimie. 2012;94(11):2423–2430.
  • Van Balken J, Van Dooren TJ, Van den Tweel W, et al. Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1 F-fructosyltransferase. Appl Microbiol Biotechnol. 1991;35(2):216–221.
  • Magri A, Oliveira MR, Baldo C, et al. Production of fructooligosaccharides by Bacillus subtilis natto CCT7712 and their antiproliferative potential. J Appl Microbiol. 2020;128(5):1414–1426.
  • Kritzinger S, Kilian S, Potgieter M, et al. The effect of production parameters on the synthesis of the prebiotic trisaccharide, neokestose, by Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Enzyme Microb Technol. 2003;32(6):728–737.
  • Shin H, Baig S, Lee S, et al. Production of fructo-oligosaccharides from molasses by Aureobasidium pullulans cells. Bioresour Technol. 2004;93(1):59–62.
  • Hayashi S, Yoshiyama T, Fujii N, et al. Production of a novel syrup containing neofructo-oligosaccharides by the cells of Penicillium citrinum. Biotechnol Lett. 2000;22(18):1465–1469.
  • Fialho MB, Simoes K, de Almeida Barros C, et al. Production of 6-kestose by the filamentous fungus Gliocladium virens as affected by sucrose concentration. Mycoscience. 2013;54(3):198–205.
  • Marín-Navarro J, Talens-Perales D, Polaina J. One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol. 2015;99(6):2549–2555.
  • Bie X-Y, Zhu M-J. Sucrose biotransformation by immobilized Phaffia rhodozyma and continuous neokestose production in a packed-bed reactor. Biocatal Biotransform. 2016;34(3):89–98.
  • Fujii T, Tochio T, Hirano K, et al. Rapid evaluation of 1-kestose producing β-fructofuranosidases from Aspergillus species and enhancement of 1-kestose production using a PgsA surface-display system. Biosci Biotechnol Biochem. 2018;82(9):1599–1605.
  • Rodrigo-Frutos D, Piedrabuena D, Sanz-Aparicio J, et al. Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Appl Microbiol Biotechnol. 2019;103(1):279–289.
  • Fernández RC, Maresma BG, Juárez A, et al. Production of fructooligosaccharides by β‐fructofuranosidase from Aspergillus sp 27H. J Chem Technol Biotechnol. 2004;79(3):268–272.
  • Mussatto SI, Ballesteros LF, Martins S, et al. Maximization of fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus under solid-state fermentation conditions. Food Bioprocess Technol. 2013;6(8):2128–2134.
  • Mussatto SI, Prata MB, Rodrigues LR, et al. Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol. 2012;235(1):13–22.
  • Mussatto SI, Aguilar CN, Rodrigues LR, et al. Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J Mol Catal B Enzym. 2009;59(1–3):76–81.
  • Zambelli P, Fernandez-Arrojo L, Romano D, et al. Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae. Process Biochem. 2014;49(12):2174–2180.
  • Takeda H, Sato K, Kinoshita S, et al. Production of 1-kestose by Scopulariopsis brevicaulis. J Ferment Bioeng. 1994;77(4):386–389.
  • Kilian S, Sutherland F, Meyer P, et al. Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol Lett. 1996;18(8):975–980.
  • Lim JS, Lee JH, Kang SW, et al. Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Technol. 2007;225(3-4):457–462.
  • Álvaro-Benito M, de Abreu M, Portillo F, et al. New insights into the fructosyltransferase activity of Schwanniomyces occidentalis ß-fructofuranosidase, emerging from nonconventional codon usage and directed mutation. Appl Environ Microbiol. 2010;76(22):7491–7499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.