1,040
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization – challenges and opportunities

, , , &
Pages 163-183 | Received 16 Oct 2020, Accepted 15 Mar 2021, Published online: 22 Jun 2021

References

  • Katre G, Joshi C, Khot M, et al. Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express. 2012;2(1):36.
  • Zinjarde S, Apte M, Mohite P, et al. Yarrowia lipolytica and pollutants: interactions and applications. Biotechnol Adv. 2014;32(5):920–933.
  • Wu H, Shu T, Mao YS, et al. Characterization of the promoter, downstream target genes and recognition DNA sequence of Mhy1, a key filamentation-promoting transcription factor in the dimorphic yeast Yarrowia lipolytica. Curr Genet. 2020;66(1):245–261.
  • Braga A, Mesquita DP, Amaral AL, et al. Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. J Biotechnol. 2016;217:22–30.
  • Zinjarde SS, Pant A, Deshpande MV. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycol Res. 1998;102(5):553–558.
  • Papanikolaou S, Chevalot I, Galiotou-Panayotou M, et al. Industrial derivative of tallow: a promising renewable substrate for microbial lipid, single-cell protein and lipase production. Electron J Biotechnol. 2007;10(3):0–435.
  • Zinjarde SS, Kale BV, Vishwasrao PV, et al. Morphogenetic behavior of tropical marine yeast Yarrowia lipolytica in response to hydrophobic substrates. J Microbiol Biotechnol. 2008;18(9):1522–1528.
  • Papanikolaou S, Galiotou-Panayotou M, Chevalot I, et al. Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol. 2006;52(2):134–142.
  • Lazar Z, Dulermo T, Neuvéglise C, et al. Hexokinase-A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng. 2014;26:89–99.
  • Kolouchová I, Schreiberová O, Sigler K, et al. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. FEMS Yeast Res. 2015;15(7):1–8.
  • Tomaszewska L, Rywińska A, Gładkowski W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol. 2012;39(9):1333–1343.
  • Fickers P, Benetti P-H, Waché Y, et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005;5(6–7):527–543.
  • Lim D-H, Lim D-S, Keum Y-S. Biodegradation of 1-alkoxy-2,4-dichlorobenzenes by Yarrowia lipolytica KCTC 17618. Int Biodeterior Biodegradation. 2016;114:8–13.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113(8):1031–1051.
  • Dourou M, Mizerakis P, Papanikolaou S, et al. Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl Microbiol Biotechnol. 2017;101(19):7213–7226.
  • Mirończuk AM, Rzechonek DA, Biegalska A, et al. A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol . Biotechnol Biofuels. 2016;9(1):180.
  • Papanikolaou S, Beopoulos A, Koletti A, et al. Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J Biotechnol. 2013;168(4):303–314.
  • Ledesma-Amaro R, Nicaud JM. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res. 2016;61:40–50.
  • Barth G, Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev. 1997;19(4):219–237.
  • Liu N, Qiao K, Stephanopoulos G. 13C Metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica. Metab Eng. 2016;38:86–97.
  • Salihu A, Alam MZ. Solvent tolerant lipases: a review. Process Biochem. 2015;50(1):86–96.
  • Lipase market: food application to dominate the global market in terms of revenue: global industry analysis (2012–2016) and opportunity assessment (2017–2026). 2017 (cited 2020 May 28). Available at: https://www.futuremarketinsights.com/reports/lipase-market/
  • Carsanba E, Papanikolaou S, Erten H. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol. 2018;38(8):1230–1243.
  • Bellou S, Triantaphyllidou I-E, Aggeli D, et al. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol. 2016;37:24–35.
  • Dourou M, Aggeli D, Papanikolaou S, et al. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol. 2018;102(6):2509–2523.
  • Zhao C-H, Cui W, Liu X-Y, et al. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metab Eng. 2010;12(6):510–517.
  • Hapeta P, Rakicka M, Dulermo R, et al. Transforming sugars into fat – lipid biosynthesis using different sugars in Yarrowia lipolytica. Yeast. 2017;34(7):293–304.
  • Liu L, Pan A, Spofford C, et al. An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metab Eng. 2015;29:36–45.
  • Daskalaki A, Perdikouli N, Aggeli D, et al. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2019;103(20):8585–8596.
  • Holz M, Otto C, Kretzschmar A, et al. Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol. 2011;89(5):1519–1526.
  • Kamzolova SV, Vinokurova N, Yusupova AI, et al. Succinic acid production from n-alkanes. Eng Life Sci. 2012;12(5):1–7.
  • Fickers P, Cheng H, Lin CSK. Sugar alcohols and organic acids synthesis in Yarrowia lipolytica: where are we? Microrganisms. 2020;8(4):574–594.
  • Gonçalves C, Lopes M, Ferreira JP, et al. Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresour Technol. 2009;100(15):3759–3763.
  • Papanikolaou S, Chevalot I, Komaitis M, et al. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol. 2002;58:308–312.
  • Lopes M, Gomes AS, Silva CM, et al. Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. J Biotechnol. 2018;265:76–85.
  • Radha P, Prabhu K, Jayakumar A, et al. Biochemical and kinetic evaluation of lipase and biosurfactant assisted ex novo synthesis of microbial oil for biodiesel production by Yarrowia lipolytica utilizing chicken tallow. Process Biochem. 2020;95:17–29.
  • Lopes M, Miranda SM, Alves JM, et al. Waste cooking oils as feedstock for lipase and lipid-rich biomass production. Eur J Lipid Sci Technol. 2019;121(1):1800188.
  • Ferreira P, Lopes M, Mota M, et al. Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochem Eng J. 2016;110:35–42.
  • Papanikolaou S, Kampisopoulou E, Blanchard F, et al. Production of secondary metabolites through glycerol fermentation under carbon-excess conditions by the yeasts Yarrowia lipolytica and Rhodosporidium toruloides. Eur J Lipid Sci Technol. 2017;119(9):1600507.
  • Tzirita M, Kremmyda M, Sarris D, et al. Effect of salt addition upon the production of metabolic compounds by Yarrowia lipolytica cultivated on biodiesel-derived glycerol diluted with olive-mill wastewaters. Energies. 2019;12(19):3649.
  • Liu X, Lv J, Xu JJ, et al. Effects of osmotic pressure and pH on citric acid and erythritol production from waste cooking oil by Yarrowia lipolytica. Eng Life Sci. 2018;18(6):344–352.
  • Papanikolaou S, Muniglia L, Chevalot I, et al. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol. 2003;46(2):124–130.
  • Imandi SB, Bandaru VVR, Somalanka SR, et al. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour Technol. 2008;99(10):4445–4450.
  • Yalcin SK, Bozdemir MT, Ozbas ZY. Utilization of whey and grape must for citric acid production by two Yarrowia lipolytica strains. Food Biotechnol. 2009;23(3):266–283.
  • Lopes M, Miranda SM, Belo I. Microbial valorization of waste cooking oils for valuable compounds production – a review. Crit Rev Environ Sci Technol. 2020;50(24):2583–26161.
  • Aziz A, Basheer F, Sengar A, et al. Biological wastewater treatment (anaerobic–aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci Total Environ. 2019;686:681–708.
  • Franke-Whittle IH, Insam H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol. 2013;39(2):139–151.
  • Encinar JM, Sánchez N, Martínez G, et al. Study of biodiesel production from animal fats with high free fatty acid content. Bioresour Technol. 2011;102(23):10907–10914.
  • Gonçalves C, Oliveira F, Pereira C, et al. Fed-batch fermentation of olive mill wastewaters for lipase production. J Chem Technol Biotechnol. 2012;87(8):1215–1218.
  • Sarris D, Stoforos NG, Mallouchos A, et al. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng Life Sci. 2017;17(6):695–709.
  • Sarris D, Rapti A, Papafotis N, et al. Production of added-value chemical compounds through bioconversions of olive-mill wastewaters blended with crude glycerol by a Yarrowia lipolytica strain. Molecules. 2019;24(2):222.
  • Xiaoyan L, Xinjun Y, Jinshun L, et al. A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil. Food Bioprod Process. 2017;103:86–94.
  • Liu X, Yu X, Gao S, et al. Enhancing the erythritol production by Yarrowia lipolytica from waste oil using loofah sponge as oil-in-water dispersant. Biochem Eng J. 2019;151:107302.
  • Liu X, Lv J, Xu J, et al. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil. Appl Biochem Biotechnol. 2015;175(5):2347–2356.
  • Yan J, Han B, Gui X, et al. Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Sci Rep. 2018;8(1):758.
  • Domínguez A, Deive FJ, Sanromán MA, et al. Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240. Eur J Lipid Sci Technol. 2010;112(11):1200–1208.
  • Nunes PMB, Martins AB, Brígida AIS, et al. Intracellular lipase production by Yarrowia lipolytica using different carbon sources. Chem Eng Trans. 2014;38:421–426.
  • El Bialy H, Gomaa OM, Azab KS. Conversion of oil waste to valuable fatty acids using oleaginous yeast. World J Microbiol Biotechnol. 2011;27(12):2791–2798.
  • Katre G, Ajmera N, Zinjarde S, et al. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production. Microb Cell Fact. 2017;16(1):176.
  • Tzirita M, Papanikolaou S, Chatzifragkou A, et al. Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. and Pseudomonas putida. Eng Life Sci. 2018;18(12):932–942.
  • Gajdoš P, Hambalko J, Slaný O, et al. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica. FEMS Microbiol Lett. 2020;367(6):1–14.
  • Kanna R. Enhanced and cost-effective biosurfactant production for marine remediation contaminated with oil spill. Int J Civil Eng Technol. 2018;9(7):373–381.
  • Thirulogachandar A, Priyadharshni VS, Anbarasan T, et al. Production of microbial lipid using slaughterhouse wastewater as substrate. Int J Appl Eng Res. 2015;10(67):324–327.
  • Xiong D, Zhang H, Xie Y, et al. Conversion of mutton fat to cocoa butter equivalent by increasing the unsaturated fatty acids at the Sn-2 position of triacylglycerol through fermentation by Yarrowia lipolytica. Am J Biochem Biotechnol. 2015;11(2):57–65.
  • Vasiliadou IA, Bellou S, Daskalaki A, et al. Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: modelling and trials with Yarrowia lipolytica. J Clean Prod. 2018;200:1111–1129.
  • Radha P, Suhazsini P, Prabhu K, et al. Chicken tallow, a renewable source for the production of biosurfactant by Yarrowia lipolytica MTCC9520, and its application in silver nanoparticle synthesis. J Surfactants Deterg. 2020;23(1):119–135.
  • Radha P, Narayanan S, Chaudhuri  , et al. Synthesis of single-cell oil by Yarrowia lipolytica MTCC 9520 utilizing slaughterhouse lipid waste for biodiesel production. Biomass Convers Biorefin. 2020. https://doi.org/https://doi.org/10.1007/s13399-020-01132-y
  • Santos DKF, Rufino RD, Luna JM, et al. Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng. 2013;105:43–50.
  • Papanikolaou S, Chevalot I, Komaitis M, et al. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek. 2001;80(3/4):215–224.
  • Lopes M, Araújo C, Aguedo M, et al. The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect. J Chem Technol Biotechnol. 2009;84(4):533–537.
  • Moftah OAS, Grbavcic SZ, Moftah WAS, et al. Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J Serb Chem Soc. 2013;78(6):781–794.
  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, et al. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresour Technol. 2008;99(7):2419–2428.
  • Sarris D, Galiotou-Panayotou M, Koutinas AA, et al. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J Chem Technol Biotechnol. 2011;86(11):1439–1448.
  • Dourou M, Kancelista A, Juszczyk P, et al. Bioconversion of olive mill wastewater into high-added value products. J Clean Prod. 2016;139:957–969.
  • Kar T, Destain J, Thonart F, et al. Impact of scaled-down on dissolved oxygen fluctuations at different levels of the lipase synthesis pathway of Yarrowia lipolytica. Biotechnol Agron Soc Environ. 2010;4(S2):523–529.
  • Darvishi F, Nahvi I, Zarkesh-Esfahani H, et al. Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. J Biomed Biotechnol. 2009;2009:562943.
  • Böhm A, Boos W. Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Curr Opin Microbiol. 2004;7(2):151–156.
  • Janek T, Mirończuk AM, Rymowicz W, et al. High-yield expression of extracellular lipase from Yarrowia lipolytica and its interactions with lipopeptide biosurfactants: a biophysical approach. Arch Biochem Biophys. 2020;689:108475.
  • Fickers P, Sauveplane V, Nicaud JM. The lipases from Y. lipolytica: genetics, production, regulation, and biochemical characterization. In: Barth G, editor. Yarrowia lipolytica: biotechnological applications. Berlin: Springer; 2013. p. 99–119.
  • Papanikolaou S, Aggelis G. Selective uptake of fatty acids by the yeast Yarrowia lipolytica. Eur J Lipid Sci Technol. 2003;105(11):651–655.
  • Vyas AP, Verma JL, Subrahmanyam N. A review on FAME production processes. Fuel. 2010;89(1):1–9.
  • Koutinas AA, Vlysidis A, Pleissner D, et al. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev. 2014;43(8):2587–2627.
  • Wang Z, Ning T, Gao K, et al. Utilization of glycerol and crude glycerol for polysaccharide production by an endophytic fungus Chaetomium globosum CGMCC 6882. Prep Biochem Biotechnol. 2019; 49(8):807–812.
  • Yang F, Hanna MA, Sun R. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels. 2012;5:13.
  • Chatzifragkou A, Makri A, Belka A, et al. Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy. 2011;36(2):1097–1108.
  • Liu H-H, Ji X-J, Huang H. Biotechnological applications of Yarrowia lipolytica: past, present and future. Biotechnol Adv. 2015;33(8):1522–1546.
  • Rymowicz W. Strain of Yarrowia lipolytica and its use in the industrial reclamation of glycerol fractions obtained during biodiesel production. United States patent US2010317076. 2008 Nov 05.
  • André A, Chatzifragkou A, Diamantopoulou P, et al. Biotechnological conversions of bio-diesel derived crude glycerol by Yarrowia lipolytica strains. Eng Life Sci. 2009;9(6):468–478.
  • Levinson WE, Kurtzman CP, Kuo TM. Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol. 2007;41(3):292–295.
  • Filippousi R, Antoniou D, Tryfinopoulou P, et al. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel-derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. J Appl Microbiol. 2019;127(4):1080–1100.
  • Dobrowolski A, Mituła P, Rymowicz W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol. 2016;207:237–243.
  • Poli JS, Silva MAN, Siqueira EP, et al. Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresour Technol. 2014;161:320–326.
  • Kamzolova SV, Fatykhova AR, Dedyukhina EG, et al. Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol. 2011;49(1):65–74.
  • Kuttiraja M, Dhouha A, Tyagi RD. Harnessing the effect of pH on lipid production in batch cultures of Yarrowia lipolytica SKY7. Appl Biochem Biotechnol. 2018;184(4):1332–1346.
  • Kumar LR, Yellapu SK, Tyagi RD, et al. Purified crude glycerol by acid treatment allows to improve lipid productivity by Yarrowia lipolytica SKY7. Process Biochem. 2020;96:165–173.
  • Makri A, Fakas S, Aggelis G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol. 2010;101(7):2351–2358.
  • Papanikolaou S, Muniglia L, Chevalot I, et al. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol. 2002;92(4):737–744.
  • Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol. 2002;82:42–49.
  • Papanikolaou S, Diamantopoulou P, Blanchard F, et al. Physiological characterization of a novel wild-type Yarrowia lipolytica strain grown on glycerol: effects of cultivation conditions and mode on polyols and citric acid production. Appl Sci. 2020;10(20):7373.
  • Rymowicz W, Rywińska A, Żarowska B, et al. Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap. 2006;60(5):391–394.
  • Rywińska A, Rymowicz W, Zarowska B, et al. Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J Microbiol Biotechnol. 2010;26(7):1217–1224.
  • Rymowicz W, Fatykhova AR, Kamzolova SV, et al. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol. 2010;87(3):971–979.
  • Rywińska A, Rymowicz W. High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. J Ind Microbiol Biotechnol. 2010;37(5):431–435.
  • Morgunov IG, Kamzolova SV, Lunina JN. The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol. 2013;97(16):7387–7397.
  • Wróbel-Kwiatkowska M, Turski W, Kocki T, et al. An efficient method for production of kynurenic acid by Yarrowia lipolytica. Yeast. 2020;37(9–10):541–547.
  • Madzak C. Engineering Yarrowia lipolytica for use in biotechnological applications: a review of major achievements and recent innovations. Mol Biotechnol. 2018;60(8):621–635.
  • Gao C, Yang X, Wang H, et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels. 2016;9(1):179.
  • Rakicka M, Lazar Z, Dulermo T, et al. Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels. 2015;8:104.
  • Johnson OA, Affam AC. Petroleum sludge treatment and disposal: a review. Environ Eng Res. 2018;24(2):191–201.
  • Margesin R, Gander S, Zacke G, et al. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7(6):451–458.
  • Chrzanowski L, Bielicka-Daszkiewicz K, Owsianiak M, et al. Phenol and n-alkanes (C12 and C16) utilization: influence on yeast cell surface hydrophobicity. World J Microbiol Biotechnol. 2008;24(9):1943–1949.
  • Kaczorek E, Chrzanowski L, Pijanowska A, et al. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. Bioresour Technol. 2008;99(10):4285–4291.
  • Kim T-H, Lee J-H, Oh Y-S, et al. Identification and characterization of an oil-degrading yeast, Yarrowia lipolytica 180. J Microbiol. 1999;37(3):128–135.
  • Zinjarde SS, Pant A. Crude oil degradation by free and immobilized cells of Yarrowia lipolytica NCIM 3589. J Environ Sci Health A. 2000;35(5):755–763.
  • Andreeva IS, Emel’yanova EK, Ol’kin SE, et al. Consumption of hydrocarbons by psychrotolerant degrader strains. Appl Biochem Microbiol. 2007;43(2):201–206.
  • Ferreira TF, Coelho MAZ, da Rocha-Leão MHM. Factors influencing crude oil biodegradation by Yarrowia lipolytica. Braz Arch Biol Technol. 2012;55(5):785–791.
  • Hassanshahian M, Tebyanian H, Cappello S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull. 2012;64(7):1386–1391.
  • Martins FF, Ferreira TF, Azevedo DA, et al. Evaluation of crude oil degradation by Yarrowia lipolytica. Chem Eng Trans. 2012;27:223–228.
  • Iheanacho CC, Okerentugba PO, Orji FA, et al. Hydrocarbon degradation potentials of indigenous fungal isolates from a petroleum hydrocarbon contaminated soil in Sakpenwa community, Niger Delta. Glo Adv Res J Environ Sci Toxicol. 2014;3(1):6–11.
  • Margesin R, Schinner F. Effect of temperature on oil degradation by a psychrotrophic in liquid culture and in soil. FEMS Microbiol Ecol. 2006;24(3):243–249.
  • Yalçın HT, Ergin-Tepebaşı G, Uyar E. Isolation and molecular characterization of biosurfactant producing yeasts from the soil samples contaminated with petroleum derivatives. J Basic Microbiol. 2018;58(9):782–792.
  • Csutak O, Corbu V, Stoica I, et al. Biotechnological applications of Yarrowia lipolytica CMGB32. Agric Agric Sci Procedia. 2015;6:545–553.
  • Fontes GC, Amaral PFF, Nele M, et al. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010; 2010:821306.
  • Souza FASD, Salgueiro AA, Albuquerque DC. Production of bioemulsifiers by Yarrowia lipolytica in sea water using diesel oil as the carbon source. Braz J Chem Eng. 2012;29(1):61–67.
  • Zinjarde SS, Pant A. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J Basic Microbiol. 2002;42(1):67–73.
  • Matatkova O, Gharwalova L, Zimola M, et al. Using odd-alkanes as a carbon source to increase the content of nutritionally important fatty acids in Candida krusei, Trichosporon cutaneum, and Yarrowia lipolytica. Int J Anal Chem. 2017; 2017:8195329.
  • Shahbandeh M. Vegetable oils: production worldwide 2012/13-2019/20, by type, 2020 (cited 2020 May 20). Available at: https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/
  • Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess. 2018;5:1.
  • Ramachandran S, Singh SK, Larroche C, et al. Oil cakes and their biotechnological applications – a review. Bioresour Technol. 2007;98(10):2000–2009.
  • Nayak A, Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. J Environ Manage. 2019;233:352–370.
  • Tripathi MK, Mishra AS. Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol. 2007;132(1–2):1–27.
  • Leite P, Salgado JM, Venâncio A, et al. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol. 2016;214:737–746.
  • Christoforou E, Fokaides PA. A review of olive mill solid wastes to energy utilization techniques. Waste Manag. 2016;49:346–363.
  • Vong WC, Au Yang KLC, Liu S-Q. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Int J Food Microbiol. 2016;235:1–9.
  • Vong WC, Hua XY, Liu S-Q. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavor properties of okara. LWT-Food Sci Technol. 2018;90:316–322.
  • Imandi SB, Karanam SK, Garapati HR. Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm kernal cake (Elaeis guineensis). ABB. 2010;01(02):115–121.
  • Imandi SB, Karanam SK, Garapati HR. Use of Plackett–Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz J Microbiol. 2013;44(3):915–921.
  • Farias MA, Valoni EA, Castro AM, et al. Lipase production by Yarrowia lipolytica in solid state fermentation using different agro industrial residues. Chem Eng Trans. 2014;38:301–306.
  • Lopes VRO, Farias MA, Belo I, et al. Nitrogen sources on TPOMW valorization through solid state fermentation performed by Yarrowia lipolytica. Braz J Chem Eng. 2016;33(2):261–270.
  • Silva JR, de Souza CEC, Valoni E, et al. Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with Yarrowia lipolytica. 3 Biotech. 2019;9(2):38.
  • Souza CEC, Farias MA, Ribeiro BD, et al. Adding value to agro-industrial co-products from canola and soybean oil extraction through lipase production using Yarrowia lipolytica in solid-state fermentation. Waste Biomass Valor. 2017;8(4):1163–1176.
  • Souza CEC, Ribeiro BD, Coelho MAZ. Characterization and application of Yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry. Appl Biochem Biotechnol. 2019;189(3):933–959.
  • Liu X, Yu X, Zhang T, et al. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. Bioresour Technol. 2018;266:439–446.
  • Liu X, Yan Y, Zhao P, et al. Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation. Bioresour Technol. 2019;294:122194.
  • Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2019; Moving forward on food loss and waste reduction. 2019.
  • Carmona-Cabello M, Garcia IL, Leiva-Candia D, et al. Valorization of food waste based on its composition through the concept of biorefinery. Curr Opin Green Sustain Chem. 2018;14:67–79.
  • Gao R, Li Z, Zhou X, et al. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnol Biofuels. 2017;10:247.
  • Gao R, Li Z, Zhou X, et al. Enhanced lipid production by Yarrowia Lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels. 2020;13:3.
  • Liu L, You Y, Deng H, et al. Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass Bioenergy. 2019;126:62–69.
  • Pereira A, Fontes-Sant’Ana GC, Amaral PFF. Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food Bioprod Process. 2019;115:68–77.
  • Li C, Yang X, Gao S, et al. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered Yarrowia lipolytica. J Clean Prod. 2018;179:151–159.
  • Yano Y, Oikawa H, Satomi M. Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica. Int J Food Microbiol. 2008;121(3):302–307.
  • Lee LW, Tay GY, Cheong MW, et al. Modulation of the volatile and non-volatile profiles of coffee fermented with Yarrowia lipolytica: I. Green coffee. LWT-Food Sci Technol. 2017;77:225–232.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol. 2011;113(8):1052–1073.
  • Llamas M, Dourou M, González-Fernández C, et al. Screening of oleaginous yeasts for lipid production using volatile fatty acids as substrate. Biomass Bioenergy. 2020;138:105553.
  • Brígida AIS, Amaral PFF, Gonçalves LRB, et al. Yarrowia lipolytica IMUFRJ 50682: lipase production in a multiphase bioreactor. Curr Biochem Eng. 2014;1(1):656–661.
  • Diarra SS. Potential of mango (Mangifera indica L.) seed kernel as a feed ingredient for poultry: a review. World Poult Sci J. 2014;70(2):279–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.