3,213
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Managing resistance evolution to transgenic Bt maize in corn borers in Spain

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 201-219 | Received 27 Jan 2021, Accepted 07 Apr 2021, Published online: 21 Jun 2021

References

  • ISAAA (International Service for the Acquisition of Agri-biotech Applications). Global Status of Commercialized Biotech/GM Crops. 2019. Ithaca (NY): ISAAA; 2020. Brief No. 55
  • Addae PC, Ishiyaku MF, Tignegre JB, et al. Efficacy of a cry1Ab gene for control of Maruca vitrata (Lepidoptera: Crambidae) in cowpea (Fabales: Fabaceae). J Econ Entomol. 2020;113(2):974–979.
  • OECD (Organisation for Economic Co-operation and Development). Consensus document on the safety information on transgenic plants expressing Bacillus thuringiensis-derived insect control proteins. OECD Papers. 2007. Vol. 7/11. Available at:.
  • Sanahuja G, Banakar R, Twyman RM, et al. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J. 2011;9(3):283–300.
  • Bravo A, Gómez I, Porta H, et al. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol. 2013;6(1):17–26.
  • Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol. 2012;111(1):1–12.
  • Soberón M, Monnerat R, Bravo A. Mode of action of cry toxins from Bacillus thuringiensis and resistance mechanisms. In: Gopalakrishnakone P, Stiles B, Alape-Girón A, et al., editors. Microbial toxins. Toxicology. Dordrecht: Springer; 2018. p. 1–28.
  • Marvier M, McCreedy C, Regetz J, et al. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science. 2007;316(5830):1475–1477.
  • Duan JJ, Marvier M, Huesing J, et al. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLOS One. 2008;3(1):e1415.
  • Naranjo SE. Impacts of Bt crops on non-target organisms and insecticide use patterns. CAB Reviews. 2009;4(011):23.
  • Comas C, Lumbierres B, Pons X, et al. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res. 2014;23(1):135–143.
  • NAS (National Academies of Sciences, Engineering, and Medicine). Genetically engineered crops: Experiences and prospects. Washington, DC: The National Academies Press; 2016.
  • Dang C, Lu Z, Wang L, et al. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China. Plant Biotechnol J. 2017;15(8):1047–1053.
  • Pellegrino E, Bedin S, Nuti M, et al. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep. 2018;8(1):3113.
  • Romeis J, Naranjo SE, Meissle M, et al. Genetically engineered crops help support conservation biological control. Biol Control. 2019;130:136–154.
  • Krogh PH, Kostov K, Damgaard CF. The effect of Bt crops on soil invertebrates: a systematic review and quantitative meta-analysis. Transgenic Res. 2020;29(5–6):487–498.
  • Gómez-Barbero M, Berbel J, Rodríguez-Cerezo E. Bt corn in Spain-the performance of the EU’s first GM crop. Nat Biotechnol. 2008;26(4):384–386.
  • Qaim M. The economics of genetically modified crops. Annu Rev Resour Econ. 2009;1(1):665–694.
  • Carpenter JE. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol. 2010;28(4):319–321.
  • Hutchison W, Burkness E, Mitchell P, et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers . Science. 2010;330(6001):222–225.
  • Lu Y, Wu L, Jiang Y, et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature. 2012;487(7407):362–365.
  • Wan P, Huang Y, Tabashnik BE, et al. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China. PLOS One. 2012;7(7):e42004.
  • Areal FJ, Riesgo L, Rodríguez-Cerezo E. Economic and agronomic impact of commercialized GM crops: a metaanalysis. J Agric Sci. 2013;151(1):7–33.
  • Brookes G, Barfoot P. Key global environmental impacts of genetically modified (GM) crop use 1996-2012. GM Crops Food. 2014;5(2):149–160.
  • Klumper W, Qaim M. A meta-analysis of the impacts of genetically modified crops. PLOS One. 2014;9(11):e111629.
  • Brookes G, Barfoot P. Environmental impacts of genetically modified (GM) crop use 1996-2016: Impacts on pesticide use and carbon emissions. GM Crops Food. 2018;9(3):109–139.
  • Brookes G. Twenty-one years of using insect resistant (GM) maize in Spain and Portugal: farm-level economic and environmental contributions. GM Crops Food. 2019;10(2):90–101.
  • Yu J, Hennessy DA, Wu F. The impact of Bt corn on aflatoxin-related insurance claims in the United States. Sci Rep. 2020;10(1):10046.
  • Porter P, Cullen E, Sappington T, et al. Comment submitted by Patrick Porter, North Central Coordinating Committee NCCC46 and other corn entomologists. 2012. EPA Docket: EPAHQ-OPP-2011–0922. Available at: http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP-2011-0922-0013
  • Lang A, Otto M. A synthesis of laboratory and field studies on the effects of transgenic Bt-maize on nontarget Lepidoptera. Entomol Exp Appl. 2010;135(2):121–134.
  • Baudrot V, Walker E, Lang A, et al. When the average hides the risk of Bt-corn pollen on non-target Lepidoptera: application to Aglais io in Catalonia. Ecotoxicol Environ Saf. 2021;207:111215.
  • Siegfried BD, Meinke LJ, Scharf ME. Resistance management concerns for areawide management programs. J Agric Urban Entomol. 1998;15:359–369.
  • Tabashnik BE, Mota-Sanchez D, Whalon ME, et al. Defining terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol. 2014;107(2):496–507.
  • Andow DA. The risk of resistance evolution in insects to transgenic insecticidal crops. Collect Biosafety Rev. 2008;4:142–199.
  • Gassmann AJ, Hutchison WD. Bt crops and insect pests: past successes, future challenges and opportunities. GM Crops Food. 2012;3(3):139.
  • Hurley TM, Babcock BA, Hellmich RL. Bt corn and insect resistance: an economic assessment of refuges. J Agric Resour Econ. 2001;26:176–194.
  • Smith JL, Farhan Y, Schaafsma AW. Practical resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) to Cry1F Bacillus thuringiensis maize discovered in Nova Scotia, Canada. Sci Rep. 2019;9(1):18247.
  • Tabashnik BE, Carrière Y. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. J Econ Entomol. 2019;112(6):2513–2523.
  • Tabashnik BE, Carrière Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol. 2017;35(10):926–935.
  • Farinós GP, Hernandez-Crespo P, Ortego F, et al. Monitoring of Sesamia nonagrioides resistance to MON 810 maize in the European Union: lessons from a long-term harmonized plan . Pest Manag Sci. 2018;74(3):557–568.
  • Thieme TGM, Buuk C, Gloyna K, et al. Ten years of MON 810 resistance monitoring of field populations of Ostrinia nubilalis in Europe. J Appl Entomol. 2018;142(1–2):192–200.
  • Farinós GP, Ortego F. [Pest resistance to Bt maize: current status and monitoring plans in Spain]. Boletín SEEA. 2019;4:52–57. Spanish.
  • Camargo AM, Andow DA, Castañera P, et al. First detection of a Sesamia nonagrioides resistance allele to Bt maize in. Sci Rep. 2018;8(1):3977.
  • Álvarez F, Georgiadis M, Messéan A, et al. Assessment of the 2018 post market environmental monitoring report on the cultivation of genetically modified maize MON810 in the EU. EFSA J. 2020;18:6245.
  • Meissle M, Romeis J, Bigler F. Bt maize and integrated pest-management – a European perspective. Pest Manag Sci. 2011;67(9):1049–1058.
  • Meissle M, Álvarez-Alfageme F, Malone LA, et al. Establishing a database of bio-ecological information on non-target arthropod species to support the environmental risk assessment of genetically modified crops in the EU. EFSA Support Publ. 2012;9EN 334:1–170.
  • Maiorano A, Cerrani I, Fumagalli D, et al. New biological model to manage the impact of climate warming on maize corn borers. Agron Sustain Dev. 2014;34(3):609–621.
  • Velasco P, Revilla P, Monetti L, et al. Corn borers (Lepidoptera:Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica. 2007;52:195–203.
  • Eizaguirre M, Fantinou AA. Abundance of Sesamia nonagrioides (Lef.) (Lepidoptera: Noctuidae) on the edges of the Mediterranean Basin. Psyche. 2012;2012:1–7.
  • Munkvold GP, Hellmich RL, Rice LG. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999;83(2):130–138.
  • Avantaggiato G, Quaranta F, Desiderio E, et al. Fumonisin contamination of maize hybrids visibly damaged by Sesamia. J Sci Food Agric. 2003;83(1):13–18.
  • Papst C, Utz HF, Melchinger AE, et al. Mycotoxins produced by Fusarium spp. in isogenic Bt vs. non-Bt maize hybrids under European corn borer pressure. Agron J. 2005;97:219–224.
  • Hellmich RL, Albajes R, Bergvinson D, et al. The present and future role of insect-resistant GM crops in maize IPM. In: Romeis J, Shelton AM, Kennedy GG, editors. Integration of insect-resistant genetically modified crops within IPM programs. Dordrecht (Netherlands): Springer; 2008. p. 119–158.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific opinion supplementing the conclusions of the environmental risk assessment and risk management recommendations for the cultivation of the genetically modified insect resistant maize Bt11 and MON810. EFSA J. 2012;10:3016.
  • EFSA (European Food Safety Authority). Opinion of the scientific panel on genetically modified organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J. 2004;48:1–18.
  • Lucht JM. Public acceptance of plant biotechnology and GM crops. Viruses. 2015;7(8):4254–4281.
  • Bates SL, Zhao J-Z, Roush RT, et al. Insect resistance management in GM crops: past, present and future. Nat Biotechnol. 2005;23(1):57–62.
  • Alcalde E. Post-market monitoring plans of Bt-176 in Spain: 1998–2005. J Verbr Lebensm. 2006;1(S1):102–105.
  • US EPA (United States Environmental Protection Agency). White paper on resistance in lepidopteran pests of Bacillus thuringiensis (Bt) plant-incorporated protectants in the United States. 2018. Available from: https://www.epa.gov/sites/production/files/2018-07/documents/position_paper_07132018.pdf
  • MacIntosh SC. Managing the risk of insect resistance to transgenic insect control traits: practical approaches in local environments. Pest Manag Sci. 2010;66(1):100–106.
  • Head GP, Greenplate J. The design and implementation of insect resistance management programs for Bt crops. GM Crops Food. 2012;3(3):144–153.
  • Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol. 1998;43:701–726.
  • Matten SR, Frederick RJ, Reynolds AH. United States Environmental protection agency insect resistance management programs for plant incorporated protectants and use of simulation modeling. In: Wozniak C, McHughen A, editors. Regulation of agricultural biotechnology: the United States and Canada. Dordrecht (Netherlands): Springer; 2012. p. 175–267.
  • Han L, Jiang X, Peng Y. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China. Curr Opin Insect Sci. 2016;15:139–143.
  • Li Y, Gao Y, Wu K. Function and effectiveness of natural refuge in IRM strategies for Bt crops. Curr Opin Insect Sci. 2017;21:1–6.
  • Fearing PL, Brown D, Vlachos D, et al. Quantitative analysis of CryIA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generations. Mol Breed. 1997;3(3):169–176.
  • Walker KA, Hellmich RL, Lewis LC. Late-instar European corn borer (Lepidoptera: Crambidae) tunneling and survival in transgenic corn hybrids. J Econ Entomol. 2000;93(4):1276–1285.
  • Nguyen HT, Rehle JA, Rheinpfalz DLR. Quantitative analysis of the seasonal and tissue specific expression Cry1Ab in transgenic maize MON810. J Plant Dis Prot. 2007;114(2):82–87.
  • Székács A, Lauber É, Juracsek J, et al. Cry1Ab toxin production of MON 810 transgenic maize. Environ Toxicol Chem. 2010;29(1):182–190.
  • Siegfried BD, Hellmich RL. Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food. 2012;3(3):184–193.
  • Castañera P, Farinós GP, Ortego F, et al. Sixteen years of Bt maize in the EU hotspot: why has resistance not evolved? PLOS One. 2016;11(5):e0154200.
  • EFSA (European Food Safety Authority). Relevance of a new scientific publication (Trtikova et al. 2015) on previous EFSA GMO Panel conclusions on the risk assessment of maize MON 810 and other Cry1Ab-expressing Bt-maize events. EFSA Support Publ. 2015;11:EN–878.
  • Andreadis SS, Álvarez-Alfageme F, Sánchez-Ramos I, et al. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in Greek and Spanish population of Sesamia nonagrioides (Lepidoptera: Noctuidae). J Econ Entomol. 2007;100(1):195–201.
  • Andow DA, Alstad DN. The F2 screen for rare resistance alleles. J Econ Entomol. 1998;91(3):572–578.
  • Bourguet D, Chaufaux J, Séguin M, et al. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis. Theor Appl Genet. 2003;106(7):1225–1233.
  • Engels H, Bourguet D, Cagáň L, et al. Evaluating resistance to Bt toxin Cry1Ab by F2 screen in European populations of Ostrinia nubilalis (Lepidoptera: Crambidae). Jnl Econ Entom. 2010;103(5):1803–1809.
  • Gaspers C. The European corn borer (Ostrinia nubilalis, Hbn.), its susceptibility to the Bt-toxin Cry1F, its pheromone races and its gene flow in Europe in view of an insect resistance management [dissertation]. Aachen (Germany): Rheinisch-Westfälischen Technischen Hochschule; 2009.
  • Hun TE, Higley LG, Witkowski JF, et al. Dispersal of adult european corn borer (Lepidoptera: Crambidae) within and proximal to irrigated and non-irrigated corn. J Econ Entomol. 2001;94(6):1369–1377.
  • Showers WB, Hellmich RL, Derrick-Robinson ME, et al. Aggregation and dispersal behaviour of marked and released European corn borer (Lepidoptera: Crambidae) adults. Environ Entomol. 2001;30(4):700–710.
  • Bourguet D, Bethenod MT, Trouvë C, et al. Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize? Proc Biol Sci. 2000;267(1449):1177–1184.
  • Albajes R, Eras J, López C, et al. Testing rubidium marking for measuring adult dispersal of the corn borer Sesamia nonagrioides: first results. IOBC/WPRS Bull. 2004;27:15–22.
  • López C, Hernández-Escareño G, Eizaguirre M, et al. Antixenosis and larval and adult dispersal in the Mediterranean corn borer, Sesamia nonagrioides, in relation to Bt maize. Entomol Exp Appl. 2013;149(3):256–264.
  • López C, Sans A, Eizaguirre M. [Influence of maize plant on mating of Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae)]. Inv Agr Prod Prot Veg. 1999;14:415–422. Spanish.
  • Eizaguirre M, López C, Albajes R. Dispersal capacity in the Mediterranean corn borer, Sesamia nonagrioides. Entomol Exp Appl. 2004;113(1):25–34. h
  • López C, Eizaguirre M, Albajes R. Courtship and mating behaviour of the Mediterranean corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Span J Agric Res. 2003;1(1):43–51.
  • Dorhout DL, Sappington TW, Rice ME. Evidence for obligate migratory flight behavior in young European corn borer (Lepidoptera: Crambidae) females. Environ Entomol. 2008;37(5):1280–1290.
  • Hu Y, Andow DA. Field observations of Ostrinia nubilalis eclosion and post‐eclosion activity of females around their natal plants. Insect Sci. 2011;18(6):712–7718.
  • Qureshi JA, Buschman LL, Throne JE, et al. Adult dispersal of Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) and its implications for resistance management in Bt‐maize. J Appl Entomology. 2005;129(6):281–292.
  • EFSA (European Food Safety Authority). Scientific opinion of the panel on genetically modified organisms on applications (EFSA-GMO-RX-MON810) for the renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON810; (2) feed consisting of and/or containing maize MON810, and maize MON810 for feed use (including cultivation); and of (3) food additives and feed materials produced from maize MON810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA J. 2009;1149:1–85.
  • EuropaBio. Harmonised insect resistance management (IRM) plan for cultivation of Bt maize (single insecticidal trait) in the EU. 2019. Available from: https://ec.europa.eu/food/plant/gmo/post_authorisation/plans_reports_opinions/report_2019_mon_810_en
  • Camargo AM, Arias-Martín M, Castañera P, et al. Performance of Sesamia nonagrioides on cultivated and wild host plants: implications for Bt maize resistance management. Pest Manag Sci. 2020;76(11):3657–3666.
  • Losey JE, Calvin DD, Carter ME, et al. Evaluation of noncorn host plants as a refuge in a resistance management program for European corn borer (Lepidoptera: Crambidae) on Bt-corn. Environ Entomol. 2001;30(4):728–735.
  • Onstad DW, Crespo AL, Pan Z, et al. Blended refuge and insect resistance management for insecticidal corn. Environ Entomol. 2018;47(1):210–219.
  • Siegfried BD, Spencer T. Bt resistance monitoring in European corn borers and western corn rootworms. In: Oliver M, Li Y, editors. Gene containment. New York (NY): Wiley; 2012. Chapter 3.
  • Siegfried BD, Spencer T, Crespo AL, et al. Ten years of Bt resistance monitoring in the European corn borer: what we know, what we don’t know, and what we can do better? Am Entomol. 2007;53(4):208–214.
  • Wilhelm R, Sanvido O, Castañera P, et al. Monitoring the commercial cultivation of Bt maize in Europe – conclusions and recommendations for future monitoring practice. Environ Biosafety Res. 2009;8(4):219–225.
  • Glaser JA, Matten SR. Sustainability of insect resistance management strategies for transgenic Bt corn. Biotechnol Adv. 2003;22(1–2):45–69.
  • González-Núñez M, Ortego F, Castañera P. Susceptibility of Spanish populations of the corn borers Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae) to a Bacillus thuringiensis endotoxin. J Econ Entomol. 2000;93(2):459–463.
  • EFSA (European Food Safety Authority). Clarifications on EFSA GMO Panel recommendations on the Insect Resistance Management plan for genetically modified maize MON810. EFSA Support Publ. 2015;12:EN–842.
  • EFSA (European Food Safety Authority). Assessment of the 2017 post-market environmental monitoring report on the cultivation of genetically modified maize MON810. EFSA J. 2019;17:5742.
  • EFSA (European Food Safety Authority). Statement on annual post-market environmental monitoring report on the cultivation of genetically modified maize MON810 in 2016. EFSA J. 2018;16:5287.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2009. EFSA J. 2011;9:2376.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual Post-Market Environmental Monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2010. EFSA J. 2012;10:2610.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual Post-Market Environmental Monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2011. EFSA J. 2013;11:3500.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2012. EFSA J. 2014;12:3704.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2013. EFSA J. 2015;13:4039.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific opinion on the revised annual post-market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON810 in 2013 from Monsanto. Europe S.A. EFSA J. 2015;13:4295.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual post-market environmental monitoring (PMEM) report from Monsanto Europe S.A. on the cultivation of genetically modified maize MON810 in 2014. EFSA J. 2016;14:4446.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms). Scientific Opinion on the annual post-market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON810 in 2015 from Monsanto. Europe S.A. EFSA J. 2017;15:4805.
  • Huang F, Andow AA, Buschman LL. Success of the high dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl. 2011;140(1):1–16.
  • Storer NP, Babcock JM, Schlenz M, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol. 2010;103(4):1031–1038.
  • Farias JR, Andow DA, Horikoshi RJ, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 2014;64:150–158.
  • Omoto C, Bernardi O, Salmeron E, et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci. 2016;72(9):1727–1736.
  • Alstad DN, Andow DA. Managing the evolution of insect resistance to transgenic plants. Science. 1995;268(5219):1894–1896.
  • Carrière Y, Brown ZS, Downes SJ, et al. Governing evolution: a socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio. 2020;49(1):1–16.
  • Gould F. Simulation models for predicting durability of insect-resistant germ plasm: a deterministic diploid, two-locus model. Environ Entomol. 1986;15(1):1–10.
  • Arpaia S, Chiriatti K, Giorio G. Predicting the adaptation of Colorado potato beetle (Coleoptera: Chrysomelidae) to transgenic eggplants expressing CryIII toxin: the role of gene dominance, migration, and fitness costs. J Econ Entomol. 1998;91(1):21–29.
  • Tabashnik BE. Delaying insect resistance to transgenic crops. Proc Natl Acad Sci USA. 2008;105(49):19029–19030.
  • Caprio M. Evaluating resistance management strategies for multiple toxins in the presence of external refuges. J Econ Entomol. 1998;91(5):1021–1031.
  • Andow DA, Pueppke SG, Schaafsma AW, et al. Early detection and mitigation of resistance to Bt maize by western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol. 2016;109(1):1–12.
  • Gould F, Anderson A, Jones A, et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci U S A. 1997;94(8):3519–3523.
  • Downes S, Walsh T, Tay WT. Bt resistance in Australian insect pest species. Curr Opin Insect Sci. 2016;15:78–83.
  • Carriere Y, Fabrick JA, Tabashnik BR. Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol. 2016;34(4):291–302.
  • Tabashnik BE, Liesner LR, Ellsworth PC, et al. Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proc Natl Acad Sci USA. 2021;118(1):e2019115118.
  • Zhou L, Alphey N, Walker AS, et al. Combining the high-dose/refuge strategy and self-limiting transgenic insects in resistance management-A test in experimental mesocosms. Evol Appl. 2018;11(5):727–738.
  • Brewer TR, Bonsall M. Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes . J Theor Biol. 2021;509:110514.
  • Farinós GP, de la Poza M, Ortego F, et al. Monitoring corn borers resistance to Bt-maize in Spain. In: Miklau M, Gaugitsch H, Heissenberger A, editors. Proceedings EU Workshop: Monitoring of environmental impacts of genetically modified plants; 2000 Nov 9–10; Berlin (Germany): German Federal Environmental Agency; 2001. p. 114–118.
  • Farinós GP, de la Poza M, González Núñez M, et al. Research programme to monitor corn borer resistance to Bt-maize in Spain. IOBC/WPRS Bull. 2004;27:7377.
  • Farinós GP, De la Poza M, Hernndez-Crespo P, et al. Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after five years of Bt maize cultivation in Spain. Entomol Exp Appl. 2004;110(1):23–30.
  • Farinós GP, Andreadis SS, de la Poza M, et al. Comparative assessment of the field-susceptibility of Sesamia nonagrioides to the Cry1Ab toxin in areas with different adoption rates of Bt maize and in Bt-free areas. Entomol Exp Appl. 2011;30(7):902–906.