1,493
Views
18
CrossRef citations to date
0
Altmetric
Review Articles

Bioactive components from Moringa oleifera seeds: production, functionalities and applications – a critical review

ORCID Icon, ORCID Icon, , , &
Pages 271-293 | Received 04 Aug 2020, Accepted 17 Apr 2021, Published online: 20 Jun 2021

References

  • Padayachee B, Baijnath H. An overview of the medicinal importance of Moringaceae. J Med Plants Res. 2012;6(48):5831–5839.
  • Leone A, Spada A, Battezzati A, et al. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16(6):12791–12835.
  • Fahey JW. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J. 2005;1(5):1–15.
  • Palada MC. Moringa (Moringa oleifera Lam.): a versatile tree crop with horticultural potential in the subtropical United States. HortSci. 1996;31(5):794–797.
  • Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J Ethnopharmacol. 2013;150(2):682–691.
  • Rockwood J, Anderson B, Casamatta D. Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. Int J Phytother Res. 2013;3(2):61–71.
  • Vats S, Gupta T. Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiol Mol Biol Plants. 2017;23(1):239–248.
  • Kasolo JN, Bimenya GS, Ojok L, et al. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J Med Plants Res. 2010;4(9):753–757.
  • Nair S, Varalakshmi K. Anticancer, cytotoxic potential of Moringa oleifera extracts on HeLa cell line. J Nat Pharm. 2011;2(3):138–142.
  • Sutalangka C, Wattanathorn J, Muchimapura S, et al. Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxid Med Cell Longev. 2013;2013:695936.
  • Saa RW, Fombang EN, Ndjantou EB, et al. Njintang NYJFs, nutrition. Treatments and uses of Moringa oleifera seeds in human nutrition: a review. Food Sci Nutr. 2019;7(6):1911–1919.
  • Saini RK, Sivanesan I, Keum Y-S. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016;6(2):203.
  • Aderinola TA, Monisola Alashi A, Fagbemi aN, et al. Moringa oleifera flour protein fractions as food ingredients with antioxidant properties. SDRP-JFST. 2019;4(4):720–728.
  • Aderinola TA, Alashi AM, Nwachukwu ID, et al. Antihypertensive and antioxidant properties of Moringa oleifera seed enzymatic protein hydrolysate and ultrafiltration fractions. Curr Top Nutraceutical Res. 2019;17(4):437–444.
  • Aderinola TA, Alashi AM, Nwachukwu ID, et al. In vitro digestibility, structural and functional properties of Moringa oleifera seed proteins. Food Hydrocolloids. 2020;101:105574.
  • Aderinola TA, Fagbemi TN, Enujiugha VN, et al. In vitro antihypertensive and antioxidative properties of alcalase-derived Moringa oleifera seed globulin hydrolysate and its membrane fractions. J Food Process Preserv. 2019;43(2):e13862.
  • Aderinola TA, Fagbemi TN, Enujiugha VN, et al. In vitro antihypertensive and antioxidative properties of trypsin-derived Moringa oleifera seed globulin hydrolyzate and its membrane fractions. Food Sci Nutr. 2019;7(1):132–138.
  • Aderinola TA, Fagbemi TN, Enujiugha VN, et al. Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon. 2018;4(10):e00877.
  • Garza NGG, Koyoc JAC, Castillo JAT, et al. Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). J Food Sci Technol. 2017;54(13):4268–4276.
  • Liang L, Wang C, Li S, et al. Nutritional compositions of Indian Moringa oleifera seed and antioxidant activity of its polypeptides. Food Sci Nutr. 2019;7(5):1754–1760.
  • Liang L-L, Cai S-Y, Gao M, et al. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J Funct Foods. 2020;64:103698.
  • Leone A, Spada A, Battezzati A, et al. Moringa oleifera seeds and oil: characteristics and uses for human health. IJMS. 2016;17(12):2141.
  • Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants. 2017;6(4):91.
  • Alain Mune Mune M, Nyobe EC, Bakwo Bassogog C, et al. A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds. Cogent Food Agric. 2016;2(1):1–8.
  • Mutiara T, Titi E, Estiasih W. Effect lactagogue Moringa leaves (Moringa oleifera Lam) powder in rats white female wistar. J Basic Appl Sci Res. 2013;3(4):430–434.
  • Richter N, Siddhuraju P, Becker KJA. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture. 2003;217(1–4):599–611.
  • Khor KZ, Lim V, Moses EJ, et al. Abdul Samad N. The in vitro and in vivo anticancer properties of Moringa oleifera. Evid Based Complement Alternat Med. 2018;2018:1071243.
  • Falowo AB, Mukumbo FE, Idamokoro EM, et al. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: a review. Food Res Int. 2018;106:317–334.
  • Busani M, Patrick JM, Arnold H, et al. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr J Biotechnol. 2011;10(60):12925–12933.
  • Ma Z, Ahmad J, Zhang H, et al. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S Afr J Bot. 2020;129:40–46.
  • Yamaguchi NU, Cusioli LF, Quesada HB, et al. A review of Moringa oleifera seeds in water treatment: trends and future challenges. Process Saf Environ Prot. 2020;147:405–420.
  • Anwar F, Rashid U. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak J Bot. 2007;39(5):1443–1453.
  • Adamczyk B, Simon J, Kitunen V, et al. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. ChemistryOpen. 2017;6(5):610–614.
  • Biesalski, HK, Grimm P. Pocket atlas of nutrition (No. Ed. 3 enlarged & updated). Georg Thieme Verlag; 2004.
  • Singh RG, Negi PS, Radha C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J Funct Foods. 2013;5(4):1883–1891.
  • Singh BN, Singh B, Singh R, et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol. 2009;47(6):1109–1116.
  • Padla EP, Solis LT, Levida RM, et al. Antimicrobial isothiocyanates from the seeds of Moringa oleifera Lam. Z Naturforsch C J Biosci. 2012;67(11–12):557–564.
  • Guevara AP, Vargas C, Sakurai H, et al. An antitumor promoter from Moringa oleifera Lam. Mutat Res/Genet Toxicol Environ Mutagen. 1999;440(2):181–188.
  • Oluduro OA, Aderiye BI, Connolly JD, et al. Characterization and antimicrobial Activity of 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl thiocarboxamide; a novel bioactive compound from Moringa oleifera seed extract. Folia Microbiol. 2010;55(5):422–426.
  • Aja P, Nwachukwu N, Ibiam U, et al. Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am J Phytomed Clin Ther. 2014;2(3):310–321.
  • Rim Jeon S, Ha Lee K, Ha Shin D, et al. Synergistic antimicrobial efficacy of mesoporous ZnO loaded with 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate isolated from the Moringa oleifera seed. J Gen Appl Microbiol. 2014;60(6):251–255.
  • Galuppo M, Nicola GR, Iori R, et al. Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules. 2013;18(11):14340–14348.
  • Galuppo M, Giacoppo S, De Nicola GR, et al. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia. 2014;95:160–174.
  • Giacoppo S, Galuppo M, De Nicola GR, et al. 4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury . Bioorg Med Chem. 2015;23(1):80–88.
  • Jaja-Chimedza A, Zhang L, Wolff K, et al. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J Funct Foods. 2018;47:376–385.
  • Jaja-Chimedza A, Graf BL, Simmler C, et al. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLOS One. 2017;12(8):e0182658.
  • Amagloh FK, Benang A. Effectiveness of Moringa oleifera seed as coagulant for water purification. Afr J Agric Res. 2009;4(1):119–123.
  • Amina M, Al Musayeib NM, Alarfaj NA, et al. Exploiting the potential of Moringa oleifera oil/polyvinyl chloride polymeric bionanocomposite film enriched with silver nanoparticles for antimicrobial activity. Int J Polym Sci. 2019;2019:1–11.
  • Ayerza R. Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) growing in the Arid Chaco of Argentina. Ind Crops Prod. 2011;33(2):389–394.
  • Elsayed EA, Sharaf-Eldin MA, Wadaan M. In vitro evaluation of cytotoxic activities of essential oil from Moringa oleifera seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. Asian Pac J Cancer Prev. 2015;16(11):4671–4675.
  • Abiodun O, Adegbite J, Omolola A. Chemical and physicochemical properties of Moringa flours and oil. Global J Sci Front Res Biol Sci. 2012;12(5):1–7.
  • Ijarotimi OS, Adeoti OA, Ariyo O. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour. Food Sci Nutr. 2013;1(6):452–463.
  • Mbah B, Eme P, Ogbusu O. Effect of cooking methods (boiling and roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds. Pak J Nutr. 2012;11(3):211–215.
  • Moyo B, Masika PJ, Hugo A, et al. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African J Biotechnol. 2011;10(60):12925–12933.
  • Lurling M, Beekman W. Anti-cyanobacterial activity of Moringa oleifera seeds. J Appl Phycol. 2010;22(4):503–510.
  • Hamza AA. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem Toxicol. 2010;48(1):345–355.
  • Mahajan SG, Mehta AA. Inhibitory action of ethanolic extract of seeds of Moringa oleifera Lam. on systemic and local anaphylaxis. J Immunotoxicol. 2007;4(4):287–294.
  • Mahajan SG, Mali RG, Mehta AA. Protective effect of ethanolic extract of seeds of Moringa oleifera Lam. against inflammation associated with development of arthritis in rats. J Immunotoxicol. 2007;4(1):39–47.
  • Nieman DC, Butterworth DE, Nieman CN. Nutrition. Dubugye (MI): Wm. C. Brown; 1992. p. 237–312
  • Compaoré WR, Nikièma PA, Bassolé HIN, et al. Chemical composition and antioxidative properties of seeds of Moringa oleifera and pulps of Parkia biglobosa and Adansonia digitata commonly used in food fortification in Burkina Faso. Current Res J Bio Sci. 2011;3(1):64–72.
  • Faso B. Nutritional properties of enriched local complementary flours. Adv J Food Sci Technol. 2011;3(1):31–39.
  • Bridgemohan P, Bridgemohan R, Mohamed M. Chemical composition of a high protein animal supplement from Moringa oleifera. African J Food Sci Technol. 2014;5(5):125–128.
  • Mattila P, Mäkinen S, Eurola M, et al. Nutritional value of commercial protein-rich plant products. Plant Foods Hum Nutr. 2018;73(2):108–115.
  • Esther O, Oladipo A. Preliminary test of phytochemical screening of crude extracts of Moringa oleifera Seed. J Appl Chem. 2012;3(2):11–13.
  • Sinha S. Phytochemical analysis and antibacterial potential of Moringa oleifera Lam. Int J Sci Innovations Discoveries. 2012;2(4):401–407.
  • Idris MA, Jami MS, Hammed AM, et al. Moringa oleifera seed extract: a review on its environmental applications. Int J Appl Environ Sci. 2016;11(6):1469–1486.
  • Mehta S, Rai PK, Rai NK, et al. Role of spectral studies in detection of antibacterial phytoelements and phytochemicals of Moringa oleifera. Food Biophys. 2011;6(4):497–502.
  • Abd Rani NZ, Husain K, Kumolosasi E. Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol. 2018;9:108.
  • Acquah C, Agyei D, Obeng EM, et al. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr. 2020;60(7):1195–1206.
  • Acquah C, Dzuvor CK, Tosh S, et al. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr. 2020;1–14.
  • Agyei D, Jeevanandam J, Dzuvor CKO, et al. Novel ingredients from cereals. Innovative Process Technol Healthy Grains. 2020;143–175.
  • Agyei D, Pan S, Acquah C, et al. Bioactivity profiling of peptides from food proteins. Soft chemistry and food fermentation. Cambridge (MA): Elsevier; 2017. p. 49–77.
  • Gnasegaran GK, Agyei D, Pan S, et al. Process development for bioactive peptide production. Food Bioactives. Cham: Switzerland: Springer; 2017. p. 91–110.
  • Dzuvor CKO, Taylor JT, Acquah C, et al. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23(10):2444.
  • Fotouo-M H, Du Toit ES, Robbertse PJ. Germination and ultrastructural studies of seeds produced by a fast-growing, drought-resistant tree: implications for its domestication and seed storage. AoB Plants. 2015;7:1–12.
  • Anwar F, Ashraf M, Bhanger MI. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J Amer Oil Chem Soc. 2005;82(1):45–51.
  • Kumar Ganesan S, Singh R, Choudhury DR, et al. Genetic diversity and population structure study of drumstick (Moringa oleifera Lam.) using morphological and SSR markers. Ind Crops Prod. 2014;60:316–325.
  • Rommi K, Hakala TK, Holopainen U, et al. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes. J Agric Food Chem. 2014;62(32):7989–7997.
  • Hadnadjev M, Dapcevic-Hadnadjev T, Pojic M, et al. Progress in vegetable proteins isolation techniques: a review. Food Feed Res. 2017;44(1):11–21.
  • Branlard G, Bancel E. Protein extraction from cereal seeds. Plant Proteomics. London (UK): Springer. 2007. p. 15–25.
  • Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv. 2011;29(3):272–277.
  • Avramenko NA, Chang C, Low NH, et al. Encapsulation of flaxseed oil within native and modified lentil protein-based microcapsules. Food Res Int. 2016;81:17–24.
  • Karamać M, Kosińska-Cagnazzo A, Kulczyk A. Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. IJMS. 2016;17(7):1027.
  • Kim S-K, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods. 2010;2(1):1–9.
  • Qi W, He Z. Enzymatic hydrolysis of protein: mechanism and kinetic model. Front Chem China. 2006;1(3):308–314.
  • Tavano OL. Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B: Enzym. 2013;90:1–11.
  • Castro HC, Abreu PA, Geraldo RB, et al. Looking at the proteases from a simple perspective. J Mol Recognit. 2011;24(2):165–181.
  • Karovičová ZK-J. Kohajdova J. Fermentation of cereals for specific purpose. J Food Nutr Res. 2007;46(2):51–57.
  • Missaoui J, Saidane D, Mzoughi R, et al. Fermented Seeds (“Zgougou”) from Aleppo Pine as a novel source of potentially probiotic lactic acid bacteria. Microorganisms. 2019;7(12):709.
  • Schaffner DW, Beuchat LR. Fermentation of aqueous plant seed extracts by lactic acid bacteria. Appl Environ Microbiol. 1986;51(5):1072–1076.
  • Hotz C, Gibson RS. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr. 2007;137(4):1097–1100.
  • Chaves‐López C, Serio A, Grande‐Tovar CD, et al. Traditional fermented foods and beverages from a microbiological and nutritional perspective: the Colombian heritage. Compr Rev Food Sci Food Saf. 2014;13(5):1031–1048.
  • Alka S, Neelam Y, Shruti S. Effect of fermentation on physicochemical properties and in vitro starch and protein digestibility of selected cereals. Int J Agric Food Sci. 2012;2(3):66–70.
  • Pranoto Y, Anggrahini S, Efendi Z. Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci. 2013;2:46–52.
  • Jude‐Ojei B, Lola A, Ajayi I, et al. Functional and pasting properties of maize ‘Ogi’ supplemented with fermented moringa seeds. J Food Process Technol. 2017;8(674):10–4172.
  • Kumar V, Sinha AK, Makkar HP, et al. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem. 2010;120(4):945–959.
  • Ortiz D, Nkhata S, Buechler A, et al. Nutritional changes during biofortified maize fermentation (steeping) for ogi production. FASEB J. 2017;31(1_supplement):32.4–4.
  • Cavaliere C, Capriotti AL, La Barbera G, et al. Liquid chromatographic strategies for separation of bioactive compounds in food matrices. Molecules. 2018;23(12):3091.
  • Gratz S, Gamble B, Stalcup A. Inclusion complexation: liquid chromatography. Oxford: Academic Press; 2000. p. 3079–3086.
  • Vailaya A, Horváth C. Retention in reversed-phase chromatography: partition or adsorption? J Chromatogr A. 1998;829(1–2):1–27.
  • Di Palma S, Hennrich ML, Heck AJ, et al. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics. 2012;75(13):3791–3813.
  • Ghebremichael K, Gunaratna K, Dalhammar G. Single-step ion exchange purification of the coagulant protein from Moringa oleifera seed. Appl Microbiol Biotechnol. 2006;70(5):526–532.
  • McCalley DV. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A. 2017;1523:49–71.
  • Lemes AC, Sala L, Ores JC, et al. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. IJMS. 2016;17(6):950.
  • Acquah C, Chan YW, Pan S, et al. Structure-informed separation of bioactive peptides . J Food Biochem. 2019;43(1):e12765.
  • Nawaz H, Shi J, Mittal GS, et al. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep Purif Technol. 2006;48(2):176–181.
  • Castel V, Andrich O, Netto FM, et al. Comparison between isoelectric precipitation and ultrafiltration processes to obtain Amaranth mantegazzianus protein concentrates at pilot plant scale. J Food Eng. 2012;112(4):288–295.
  • Saucedo-Pompa S, Torres-Castillo J, Castro-López C, et al. Moringa plants: bioactive compounds and promising applications in food products. Food Res Int. 2018;111:438–450.
  • Anudeep S, Radha C. Carbohydrates of Moringa oleifera seeds. Int J Res Anal Rev. 2018;5(4):103–108.
  • Anudeep S, Prasanna VK, Adya SM, et al. Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int J Biol Macromol. 2016;91:656–662.
  • Hayes M, Tiwari BK. Bioactive carbohydrates and peptides in foods: an overview of sources, downstream processing steps and associated bioactivities. Int J Mol Sci. 2015;16(9):22485–22508.
  • Garcia-Mendoza MP, Paula JT, Paviani LC, et al. Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT-Food Sci Technol. 2015;62(1):131–137.
  • Mustafa A, Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta. 2011;703(1):8–18.
  • Soquetta MB, Terra LM, Bastos CP. Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA-J Food. 2018;16(1):400–412.
  • Ruiz-Matute AI, Ramos L, Martínez-Castro I, et al. Fractionation of honey carbohydrates using pressurized liquid extraction with activated charcoal. J Agric Food Chem. 2008;56(18):8309–8313.
  • Subhedar PB, Gogate PR. Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J Mol Catal B: Enzym. 2014;101:108–114.
  • Herrero M, Cifuentes A, Ibañez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem. 2006;98(1):136–148.
  • Herrero M, Mendiola JA, Cifuentes A, et al. Supercritical fluid extraction: recent advances and applications. J Chromatogr A. 2010;1217(16):2495–2511.
  • Koçak E, Pazır F. Effect of extraction methods on bioactive compounds of plant origin. Turkish JAF Scitech. 2018;6(6):663–675.
  • Barbary O, Al-Sohaimy S, El-Saadani M, et al. Extraction, composition and physicochemical properties of flaxseed mucilage. J Adv Agric Res. 2009;14:605–620.
  • Farrán A, Cai C, Sandoval M, et al. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem Rev. 2015;115(14):6811–6853.
  • Ojiako E, Okeke C. Determination of antioxidant of Moringa oleifera seed oil and its use in the production of a body cream. Asian J Plant Sci Res. 2013;3(3):1–4.
  • Aviara N, Musa W, Owolarafe O, et al. Effect of processing conditions on oil point pressure of Moringa oleifera seed. J Food Sci Technol. 2015;52(7):4499–4506.
  • Bhutada PR, Jadhav AJ, Pinjari DV, et al. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind Crops Prod. 2016;82:74–80.
  • Belo YN, Al-Hamimi S, Chimuka L, et al. Ultrahigh-pressure supercritical fluid extraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids. Anal Bioanal Chem. 2019;411(16):3685–3693.
  • Janaki S. Characterization of cold press Moringa oil. Int J Sci Res. 2015;4:386–389.
  • Latif S, Anwar F, Hussain AI, et al. Aqueous enzymatic process for oil and protein extraction from Moringa oleifera seed. Eur J Lipid Sci Technol. 2011;113(8):1012–1018.
  • Bhargavi G, Rao PN, Renganathan S. Review on the extraction methods of crude oil from all generation biofuels in last few decades. IOP Conf Ser: Mater Sci Eng. 2018;330:012024.
  • Galvão EL, Martínez J, de Oliveira HNM, et al. Supercritical extraction of linseed oil: economical viability and modeling extraction curves. Chem Eng Commun. 2013;200(2):205–221.
  • Rubilar M, Gutiérrez C, Verdugo M, et al. Flaxseed as a source of functional ingredients. J Soil Sci Plant Nutr. 2010;10(3):373–377.
  • Shim YY, Gui B, Wang Y, et al. Flaxseed (Linum usitatissimum L.) oil processing and selected products. Trends Food Sci Technol. 2015;43(2):162–177.
  • Yu S, Hongkun X, Chenghai L, et al. Comparison of microwave assisted extraction with hot reflux extraction in acquirement and degradation of anthocyanin from powdered blueberry. Int J Agric Biol Eng. 2016;9(6):186–199.
  • Zhong J, Wang Y, Yang R, et al. The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Ind Crops Prod. 2018;120:1–10.
  • Rosas-Mendoza ME, Coria-Hernández J, Meléndez-Pérez R, et al. Characteristics of chia (Salvia hispanica L.) seed oil extracted by ultrasound assistance. J Mex Chem Soc. 2017;61(4):326–335.
  • Nde DB, Foncha AC. Optimization methods for the extraction of vegetable oils: a review. Processes. 2020;8(2):209.
  • Alegbeleye OO. How functional is Moringa Oleifera? A review of its nutritive, medicinal, and socioeconomic potential. Food Nutr Bull. 2018;39(1):149–170.
  • Dhakad AK, Ikram M, Sharma S, et al. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother Res. 2019;33(11):2870–2903.
  • Lin M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods. 2018;47:469–479.
  • Randriamboavonjy JI, Loirand G, Vaillant N, et al. Cardiac protective effects of Moringa oleifera seeds in spontaneous hypertensive rats. Am J Hypertens. 2016;29(7):873–881.
  • Paula PC, Sousa DO, Oliveira JT, et al. A protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effects in alloxan-induced diabetic mice. Molecules. 2017;22(2):271.
  • Abdulazeez A, Ajiboye O, Wudil A, et al. Partial purification and characterization of angiotensin converting enzyme inhibitory alkaloids and flavonoids from the leaves and seeds of Moringa oleifera. JABB. 2016;5(2):1–11.
  • Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int. 2015;2015:381040.
  • Fatoumata B, MamadouSaïdou B, Mohamet S, et al. Antidiabetic properties of Moringa oleifera: a review of the literature. J Diabetes Endocrinol. 2020;11(1):18–29.
  • Vargas-Sánchez K, Garay-Jaramillo E, González-Reyes RE. Effects of Moringa oleifera on glycaemia and insulin levels: a review of animal and human studies. Nutrients. 2019;11(12):2907.
  • Gupta R, Kannan GM, Sharma M, et al. Therapeutic effects of Moringa oleifera on arsenic-induced toxicity in rats. Environ Toxicol Pharmacol. 2005;20(3):456–464.
  • Mahmood KT, Mugal T, Haq IU. Moringa oleifera: a natural gift – a review. J Pharm Sci Res. 2010;2(11):775.
  • Yang R-Y, Chang L-C, Hsu J-C, et al. Nutritional and functional properties of moringa leaves from germplasm, to plant, to food, to health. Moringa leaves: strategies, standards and markets for a better impact on nutrition in Africa Moringanews. Paris: CDE, CTA, GFU; 2006.
  • Lalas S, Tsaknis J. Characterization of Moringa oleifera seed oil variety Periyakulam 1. J Food Compos Anal. 2002;15(1):65–78.
  • Lalas S, Tsaknis J. Extraction and identification of natural antioxidant from the seeds of the Moringa oleifera tree variety of Malawi. J Amer Oil Chem Soc. 2002;79(7):677–683.
  • Yasa N, Masoumi F, Rouhani RS, et al. Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of Guilan. J Fac Pharm. 2009;17(3):175–180.
  • Minaiyan M, Asghari G, Taheri D, et al. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. Avicenna J Phytomed. 2014;4(2):127–136.
  • Adebayo IA, Arsad H, Samian MR. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. Afr J Tradit Complement Altern Med. 2017;14(2):282–287.
  • Asaduzzaman A, Hasan I, Chakrabortty A, et al. Moringa oleifera seed lectin inhibits Ehrlich ascites carcinoma cell growth by inducing apoptosis through the regulation of Bak and NF-κB gene expression. Int J Biol Macromol. 2018;107(Pt B):1936–1944.
  • Bharali R, Tabassum J, Azad MRH. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac J Cancer Prev. 2003;4(2):131–140.
  • Bharali DJ, Sahoo SK, Mozumdar S, et al. Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci. 2003;258(2):415–423.
  • Shebek K, Schantz AB, Sines I, et al. The flocculating cationic polypetide from Moringa oleifera seeds damages bacterial cell membranes by causing membrane fusion. Langmuir. 2015;31(15):4496–4502.
  • Pinto CE, Farias DF, Carvalho AF, et al. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective. Food Chem Toxicol. 2015;83:1–9.
  • Bukar A, Uba A, Oyeyi T. Antimicrobial profile of Moringa oleifera Lam. extracts against some food-borne microorganisms. Bayero J Pure App Sci. 2010;3(1):43–48.
  • Chuang P-H, Lee C-W, Chou J-Y, et al. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol. 2007;98(1):232–236.
  • Ferreira R, Napoleão TH, Santos AF, et al. Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera . Lett Appl Microbiol. 2011;53(2):186–192.
  • Emmanuel S, Olajide O, Abubakar S, et al. Phytochemical and antimicrobial studies of methanol, ethyl acetate, and aqueous extracts of Moringa oleifera seeds. Am J Ethnomed. 2014;1(5):346–354.
  • Onsare J, Arora D. Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. J Appl Microbiol. 2015;118(2):313–325.
  • Ali GH, EL‐Taweel GE, Ali MA. M. The cytotoxicity and antimicrobial efficiency of Moringa oleifera seeds extracts. Int J Environ Stud. 2004;61(6):699–708.
  • Chollom S, Agada G, Gotep J, et al. Investigation of aqueous extract of Moringa oleifera lam seed for antiviral activity against newcastle disease virus in ovo. J Med Plants Res. 2012;6(22):3870–3875.
  • Randriamboavonjy JI, Rio M, Pacaud P, et al. Moringa oleifera seeds attenuate vascular oxidative and nitrosative stresses in spontaneously hypertensive rats. Oxid Med Cell Longev. 2017;2017:4129459.
  • Faizi S, Siddiqui BS, Saleem R, et al. Hypotensive constituents from the pods of Moringa oleifera. Planta Med. 1998;64(3):225–228.
  • Kim Y, Wu AG, Jaja-Chimedza A, et al. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice. PLoS One. 2017;12(9):e0184709.
  • Batista AB, Oliveira JT, Gifoni JM, et al. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds. PLOS One. 2014;9(10):e111427.
  • Prabhu K, Murugan K, Nareshkumar A, et al. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1(2):124–129.
  • Agra-Neto AC, Napoleão TH, Pontual EV, et al. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res. 2014;113(1):175–184.
  • Salles HO, Braga ACL, do Nascimento MTdS, et al. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus. Rev Bras Parasitol Vet. 2014;23(2):136–143.
  • Sengupta ME, Keraita B, Olsen A, et al. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water. Water Res. 2012;46(11):3646–3656.
  • Ashfaq M, Ashfaq U. Evaluation of mosquitocidal activity of water extract of Moringa oleifera seeds against Culex quinquefasciatus (Diptera: Culicidae) in Pakistan. Pak Entomol. 2012;34(1):21–26.
  • Parwani L, Bhatnagar M, Bhatnagar A, et al. Evaluation of Moringa oleifera seed biopolymer-PVA composite hydrogel in wound healing dressing. Iran Polym J. 2016;25(11):919–931.
  • Bhatnagar M, Parwani L, Sharma V, et al. Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials. Indian J Exp Biol. 2013;51(10):804–810.
  • Bichi MH. A review of the applications of Moringa oleifera seeds extract in water treatment. Civil Environ Res. 2013;3(8):1–10.
  • Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016;5(2):49–56.
  • Olagbemide PT, Philip C. Proximate analysis and chemical composition of raw and defatted Moringa oleifera kernel. Adv Life Science Technol. 2014;24:92–99.
  • Nzikou J, Matos L, Moussounga J, et al. Characterization of Moringa oleifera seed oil variety Congo-Brazzaville. J Food Technol. 2009;7(3):59–65.
  • Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931–3946.
  • Grady CL, Daigger GT Jr, Love NG, et al. Biological wastewater treatment. Boca Raton (FL): CRC Press; 2011.
  • Gray N. How nature deals with waste. Biology of Wastewater Treatment. Covent Garden, London, UK: Imperial College Press; 2004. p. S1–14.
  • Henze M, van Loosdrecht M, Ekama G, et al. Biological wastewater treatment IWA publishing. London: Cambridge University Press; 2008.
  • Chen G. Electrochemical technologies in waste water treatment. Sep Purif Technol. 2004;38(1):11–41.
  • Berger M, Habs M, Jahn S, et al. Toxicological assessment of seeds from Moringa oleifera and Moringa stenopetala, two highly efficient primary coagulants for domestic water treatment of tropical raw waters. East Afr Med J. 1984;61(9):712–716.
  • Sotheeswaran S, Nand V, Maata M, et al. Moringa oleifera and other local seeds in water purification in developing countries. Res J Chem Environ. 2011;15(2):135–138.
  • Ndabigengesere A, Narasiah KS. Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment. Environ Technol. 1998;19(8):789–800.
  • Vieira AMS, Vieira MF, Silva GF, et al. Use of Moringa oleifera seed as a natural adsorbent for wastewater treatment. Water Air Soil Pollut. 2010;206(1–4):273–281.
  • Vijayaraghavan G, Sivakumar T, Kumar AV. Application of plant based coagulants for waste water treatment. Int J Adv Eng Res Stud. 2011;1(1):88–92.
  • Jahn SAA. Using Moringa seeds as coagulants in developing countries. J‐Am Water Works Assoc. 1988;80(6):43–50.
  • Gandji K, Chadare F, Idohou R, et al. Status and utilisation of Moringa oleifera Lam: a review. Afr Crop Sci J. 2018;26(1):137–156.
  • Mangale S, Chonde S, Jadhav A, et al. Study of Moringa oleifera (drumstick) seed as natural absorbent and antimicrobial agent for river water treatment. J Nat Prod Plant Resour. 2012;2(1):89–100.
  • Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol. 2010;101(19):7201–7210.
  • Rashid U, Anwar F, Moser BR, et al. Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol. 2008;99(17):8175–8179.
  • Ofor MO, Nwufo MI. The search for alternative energy sources: Jatropha and moringa seeds for biofuel production. J Agric Soc Res. 2011;11(2):87–94.
  • da Silva JP, Serra TM, Gossmann M, et al. Moringa oleifera oil: studies of characterization and biodiesel production. Biomass Bioenergy. 2010;34(10):1527–1530.
  • Biswas W. Life cycle assessment of biodiesel production from Moringa oleifera oilseeds. Staff Publications - Conference Papers. Paris: Moringanews, Moringa and Plant Resources Network; 2008; 1–9.
  • Rahman MM, Hassan MH, Kalam MA, et al. Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diesel engine. J Cleaner Prod. 2014;65:304–310.
  • Rashed M, Masjuki H, Kalam M, et al. Study of the oxidation stability and exhaust emission analysis of Moringa olifera biodiesel in a multi-cylinder diesel engine with aromatic amine antioxidants. Renew Energy. 2016;94:294–303.
  • Teoh YH, How HG, Masjuki HH, et al. Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends. Renew Energy. 2019;136:521–534.
  • Sastri B. The Wealth of India. A dictionary of Indian raw materials and industrial products raw materials, Vol. 6: LM. The Wealth of India A Dictionary of Indian Raw Materials and Industrial Products Raw Materials. New Delhi (India): Council of Scientific and Industrial Research; 1962; 6 LM.
  • Varmani SG, Garg M. Health benefits of Moringa oleifera: a miracle tree. Int J Food Nutr Sci. 2014;3(3):111.
  • Silver J. Moringa oleifera: the Future of Health. Village volunteers. 1–9.
  • Emmanuel S, Zaku S, Adedirin S, et al. Moringa oleifera seed-cake, alternative biodegradable and biocompatibility organic fertilizer for modern farming. ABJNA. 2011;2(9):1289–1292.
  • Exports R. Moringa seed cake. 2020 [cited 2021 Feb 22]. Available from: http://www.buymoringaplantproducts.com/moringa-seed-cake/
  • Emmanuel S, Emmanuel B, Zaku S, et al. Biodiversity and agricultural productivity enhancement in Nigeria: application of processed Moringa oleifera seeds for improved organic farming. ABJNA. 2011;2(5):867–871.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.