1,920
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine

ORCID Icon & ORCID Icon
Pages 468-486 | Received 23 Oct 2020, Accepted 06 Feb 2021, Published online: 30 Jun 2021

References

  • Gelain F, Cigognini D, Caprini A, et al. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering. Nanoscale. 2012;4(9):2946–2957.
  • Topman G, Sharabani-Yosef O, Gefen A. A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically damaged site. Med Eng Phys. 2012;34(2):225–232.
  • Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods. 2011;8(9):731–736.
  • Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.
  • Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat. 2015;227(6):746–756. Dec
  • Sun T, Jackson S, Haycock JW, et al. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122(3):372–381.
  • Fontana F, Raimondi M, Marzagalli M, et al. Epithelial-to-mesenchymal transition markers and CD44 isoforms are differently expressed in 2D and 3D cell cultures of prostate cancer cells. Cells. 2019;8(2):143.
  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–292.
  • Fontoura JC, Viezzer C, Dos Santos FG, et al. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl. 2020;107:110264.
  • Duval K, Grover H, Han LH, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266–277. Jul
  • Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21(10):571–584.
  • Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020; 5(7):539–551.
  • Gjorevski N, Lutolf MP. Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc. 2017;12(11):2263–2274.
  • Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. Adv Funct Mater. 2020;30(44):1909089.
  • Naficy S, Dehghani F, Chew YV, et al. Engineering a porous hydrogel-based device for cell transplantation. ACS Appl Bio Mater. 2020;3:1986–1994.
  • Li T, Chang J, Zhu Y, et al. 3D Printing of bioinspired biomaterials for tissue regeneration. Adv Healthcare Mater. 2020;9(23):e2000208.
  • Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22(4):669–679.
  • Dye BR, Youngblood RL, Oakes RS, et al. Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials. 2020;234:119757.
  • Ding C, Chen X, Kang Q, et al. Biomedical application of functional materials in organ-on-a-chip. Front Bioeng Biotechnol. 2020;8:823.
  • Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–2340.
  • Calandrini C, Schutgens F, Oka R, et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun. 2020;11(1):1310.
  • Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–386 e10.
  • Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019;16(11):1169–1175.
  • Kim W, Kim GH. An intestinal model with a finger-like villus structure fabricated using a bioprinting process and collagen/SIS-based cell-laden bioink. Theranostics. 2020;10(6):2495–2508.
  • Kim W, Kim G. Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl Mater Interfaces. 2018;10(48):41185–41196.
  • Low JH, Li P, Chew EGY, et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a De Novo vascular network. Cell Stem Cell. 2019;25(3):373–387 e9.
  • Ng SS, Saeb-Parsy K, Blackford SJI, et al. Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials. 2018;182:299–311.
  • Carvalho MR, Truckenmuller R, Reis RL, et al. Biomaterials and microfluidics for drug discovery and development. Adv Exp Med Biol. 2020;1230:121–135.
  • Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease. Philos Trans R Soc London, Ser B. 2018;373(1750):20170217.
  • Raja WK, Mungenast AE, Lin YT, et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PloS One. 2016;11(9):e0161969.
  • Rocker AJ, Lee DJ, Shandas R, et al. Injectable polymeric delivery system for spatiotemporal and sequential release of therapeutic proteins to promote therapeutic angiogenesis and reduce inflammation. ACS Biomater Sci Eng. 2020;6(2):1217–1227.
  • Fan C, Tang Y, Zhao M, et al. CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice. J Mol Cell Cardiol. 2020;141:1–10.
  • Levit M, Zashikhina N, Vdovchenko A, et al. Bio-inspired amphiphilic block-copolymers based on synthetic glycopolymer and poly(amino acid) as potential drug delivery systems. Polymers (Basel). 2020;12(1):183.
  • Johnson CT, Wroe JA, Agarwal R, et al. Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci U S A. 2018;115(22):E4960–E4969.
  • Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed. 2004;15(1):41–57.
  • Schnabelrauch M, Wyrwa R, Rebl H, et al. Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties. Int J Polym Sci. 2014;2014:1–12.
  • Ribeiro S, Puckert C, Ribeiro C, et al. Surface charge-mediated cell-surface interaction on piezoelectric materials. ACS Appl Mater Interfaces. 2020;12(1):191–199.
  • McCreery KP, Calve S, Neu CP. Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development. Connect Tissue Res. 2020;61(3–4):278–291.
  • Levi N, Papismadov N, Solomonov I, et al. The ECM path of senescence in aging: components and modifiers. Febs J. 2020;287(13):2636–2646. Jul
  • Kular JK, Basu S, Sharma RI. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014;5:2041731414557112.
  • Guimarães CF, Gasperini L, Marques AP, et al. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5(5):351–370.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
  • Caprini A, Silva D, Zanoni I, et al. A novel bioactive peptide: assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N Biotechnol. 2013;30(5):552–562.
  • Cunha C, Panseri S, Villa O, et al. 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int J Nanomed. 2011;6:943–955.
  • Zigon-Branc S, Markovic M, Van Hoorick J, et al. Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell microspheroids. Tissue Eng Part A. 2019;25(19–20):1369–1380.
  • Pugliese R, Marchini A, Saracino G, et al. Functionalization of self-assembling peptides for neural tissue engineering. In: Azevedo HS, Silva RMPD, editors. Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Elsevier; 2018. p. 475–493.
  • Nicolas J, Magli S, Rabbachin L, et al. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21(6):1968–1994.
  • Hilderbrand AM, Ford EM, Guo C, et al. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture. Biomater Sci. 2020;8(5):1256–1269.
  • Rivero R, Capella V, Liaudat C, et al. Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation. RSC Adv. 2020;10(10):5827–5837.
  • Lee UN, Day JH, Haack AJ, et al. Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics. Lab Chip. 2020;20(3):525–536.
  • Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655–663.
  • Jose G, Shalumon KT, Chen JP. Natural polymers based hydrogels for cell culture applications. Curr Med Chem. 2020;27(16):2734–2776.
  • Vukicevic S, Kleinman HK, Luyten FP, et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992;202(1):1–8.
  • Sasano Y, Fukumoto K, Tsukamoto Y, et al. Construction of 3D cardiac tissue with synchronous powerful beating using human cardiomyocytes from human iPS cells prepared by a convenient differentiation method. J Biosci Bioeng. 2020;129(6):749–755. Jun
  • Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun. 2019;10(1):4491.
  • Varaa N, Azandeh S, Khorsandi L, et al. Ameliorating effect of encapsulated hepatocyte-like cells derived from umbilical cord in high mannuronic alginate scaffolds on acute liver failure in rats. Iran J Basic Med Sci. 2018;21(9):928–935.
  • Dong Y, Hong M, Dai R, et al. Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: In vitro and in vivo evaluations. Sci Total Environ. 2020;707:135976.
  • Takebe T, Zhang RR, Koike H, et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc. 2014;9(2):396–409.
  • Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–379.
  • Yoshida S, Miwa H, Kawachi T, et al. Generation of intestinal organoids derived from human pluripotent stem cells for drug testing. Sci Rep. 2020;10(1):5989.
  • Ye S, Boeter J, Mihajlovic M, et al. A chemically defined hydrogel for human liver organoid culture. Adv Funct Mater. 2020;30(48):2000893.
  • Talbot NC, Caperna TJ. Proteome array identification of bioactive soluble proteins/peptides in Matrigel: relevance to stem cell responses. Cytotechnology. 2015;67(5):873–883. Oct
  • Peterson NC. From bench to cageside: risk assessment for rodent pathogen contamination of cells and biologics. ILAR J. 2008;49(3):310–315.
  • Liu H, Bockhorn J, Dalton R, et al. Removal of lactate dehydrogenase-elevating virus from human-in-mouse breast tumor xenografts by cell-sorting. J Virol Methods. 2011;173(2):266–270.
  • Soofi SS, Last JA, Liliensiek SJ, et al. The elastic modulus of Matrigel as determined by atomic force microscopy. J Struct Biol. 2009;167(3):216–219.
  • Reed J, Walczak WJ, Petzold ON, et al. In situ mechanical interferometry of matrigel films. Langmuir. 2009;25(1):36–39.
  • Li X, Sun Q, Li Q, et al. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem. 2018;6:499.
  • Pugliese R, Marchini A, Saracino GAA, et al. Cross-linked self-assembling peptide scaffolds. Nano Res. 2018;11(1):586–602.
  • Hu W, Wang Z, Xiao Y, et al. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019;7(3):843–855.
  • Pugliese R, Fontana F, Marchini A, et al. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels. Acta Biomater. 2018;66:258–271.
  • Murphy AR, Haynes JM, Laslett AL, et al. Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds. Acta Biomater. 2020;101:102–116.
  • Barry C, Schmitz MT, Propson NE, et al. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Exp Biol Med (Maywood). 2017;242(17):1679–1689.
  • Sun Y, Li W, Wu X, et al. Functional self-assembling peptide nanofiber hydrogels designed for nerve degeneration. ACS Appl Mater Interfaces. 2016;8(3):2348–2359.
  • Shi W, Huang CJ, Xu XD, et al. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater. 2016;45:247–261.
  • Marchini A, Raspa A, Pugliese R, et al. Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc Natl Acad Sci USA. 2019;116(15):7483–7492.
  • Marchini A, Favoino C, Gelain F. Multi-functionalized self-assembling peptides as reproducible 3D cell culture systems enabling differentiation and survival of various human neural stem cell lines. Front Neurosci. 2020;14:413.
  • Joung D, Truong V, Neitzke CC, et al. 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv Funct Mater. 2018;28(39):1801850.
  • Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10(21):17742–17755.
  • Benedetti V, Brizi V, Guida P, et al. Engineered kidney tubules for modeling patient-specific diseases and drug discovery. EBioMedicine. 2018;33:253–268.
  • Brizi V, Benedetti V, Lavecchia AM, et al. Engineering kidney tissues for polycystic kidney disease modeling and drug discovery. Methods Cell Biol. 2019;153:113–132.
  • Melhem M, Park J, Knapp L, et al. 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng. 2017;3(9):1980–1987.
  • Cai H, Wu FY, Wang QL, et al. Self-assembling peptide modified with QHREDGS as a novel delivery system for mesenchymal stem cell transplantation after myocardial infarction. Faseb J. 2019;33(7):8306–8320.
  • Tsukamoto Y, Akagi T, Akashi M. Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep. 2020;10(1):5484.
  • Liu J, Miller K, Ma X, et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256:120204.
  • Weaver JD, Headen DM, Hunckler MD, et al. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials. 2018;172:54–65.
  • Weaver JD, Headen DM, Coronel MM, et al. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. Am J Transplant. 2019;19(5):1315–1327.
  • Georgakopoulos N, Prior N, Angres B, et al. Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Dev Biol. 2020;20(1):4.
  • Elizondo DM, Brandy NZD, da Silva RLL, et al. Pancreatic islets seeded in a novel bioscaffold forms an organoid to rescue insulin production and reverse hyperglycemia in models of type 1 diabetes. Sci Rep. 2020;10(1):4362.
  • Schepers A, Li C, Chhabra A, et al. Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip. 2016;16(14):2644–2653.
  • Funfak A, Bouzhir L, Gontran E, et al. Biophysical control of bile duct epithelial morphogenesis in natural and synthetic scaffolds. Front Bioeng Biotechnol. 2019;7:417.
  • Mobarra N, Soleimani M, Ghayour-Mobarhan M, et al. Hybrid poly-l-lactic acid/poly(ε-caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell-derived hepatocyte-like cells. J Cell Physiol. 2019;234(7):11247–11255.
  • Tysoe OC, Justin AW, Brevini T, et al. Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nat Protoc. 2019;14(6):1884–1925.
  • Cruz-Acuna R, Quiros M, Huang S, et al. PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat Protoc. 2018;13(9):2102–2119.
  • Cruz-Acuna R, Quiros M, Farkas AE, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 2017;19(11):1326–1335.
  • Ladd MR, Martin LY, Werts A, et al. The development of newborn porcine models for evaluation of tissue-engineered small intestine. Tissue Eng Part C Methods. 2018;24(6):331–345.
  • Zhang S, Holmes TC, DiPersio CM, et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995;16(18):1385–1393.
  • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–1688.
  • Zhang S. Discovery and design of self-assembling peptides. Royal Soc. 2017;7(6):20170028.
  • Taraballi F, Natalello A, Campione M, et al. Glycine-spacers influence functional motifs exposure and self-assembling propensity of functionalized substrates tailored for neural stem cell cultures. Front Neuroeng. 2010;3:1.
  • Lee S, Trinh THT, Yoo M, et al. Self-assembling peptides and their application in the treatment of diseases. Int J Mol Sci. 2019;20:5850.
  • Doberdoli D, Bommer C, Begzati A, et al. Randomized clinical trial investigating self-assembling peptide P11-4 for treatment of early occlusal caries. Sci Rep. 2020;10(1):4195.
  • de Nucci G, Reati R, Arena I, et al. Efficacy of a novel self-assembling peptide hemostatic gel as rescue therapy for refractory acute gastrointestinal bleeding. Endoscopy. 2020;52(09):773–779.
  • Vigier S, Gagnon H, Bourgade K, et al. Composition and organization of the pancreatic extracellular matrix by combined methods of immunohistochemistry, proteomics and scanning electron microscopy. Curr Res Transl Med. 2017;65(1):31–39.
  • Cigognini D, Satta A, Colleoni B, et al. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PloS One. 2011;6(5):e19782.
  • Vishwakarma A, Bhise NS, Evangelista MB, et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 2016;34(6):470–482.
  • Correia CA, Nadine S, Mano JF. Cell encapsulation systems toward modular tissue regeneration: from immunoisolation to multifunctional devices. Adv Funct Mat. 2020;30(26):1908061.
  • Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):149–165. Jun
  • Whitcutt MJ, Adler KB, Wu R. A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells. In Vitro Cell Dev Biol. 1988;24(5):420–428.
  • Germain L, Larouche D, Nedelec B, et al. Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: a case series of 14 severely burned patients indicating clinical effectiveness. Eur Cell Mater. 2018;36:128–141.
  • Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671–687.
  • McCauley KB, Hawkins F, Serra M, et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 2017;20(6):844–857 e6.
  • Wang X. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines. 2019;10(12):814.
  • Arab W, Rauf S, Al-Harbi O, et al. Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells. Int J Bioprint. 2018;4(2):129.
  • Papadimitriou L, Manganas P, Ranella A, et al. Biofabrication for neural tissue engineering applications. Mater Today Bio. 2020;6:100043.
  • Messina A, Luce E, Hussein M, et al. Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration. Cells. 2020;9(2):420.
  • Shakhssalim N, Soleimani M, Dehghan MM, et al. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model . Mater Sci Eng C Mater Biol Appl. 2017;75:877–884.
  • Aghazadeh Y, Nostro MC. Cell therapy for type 1 diabetes: current and future strategies. Curr Diab Rep. 2017;17(6):37.
  • Salg GA, Giese NA, Schenk M, et al. The emerging field of pancreatic tissue engineering: a systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng. 2019;10:2041731419884708.
  • McMahan S, Taylor A, Copeland KM, et al. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A. 2020;108(4):972–983.
  • Smagul S, Kim Y, Smagulova A, et al. Biomaterials loaded with growth factors/cytokines and stem cells for cardiac tissue regeneration. Int J Mol Sci. 2020;21(17):5952.
  • Pena B, Laughter M, Jett S, et al. Injectable hydrogels for cardiac tissue engineering. Macromol Biosci. 2018;18(6):e1800079.
  • Alonzo M, AnilKumar S, Roman B, et al. 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64–83.
  • Chen Z, Chen L, Zeng C, et al. Functionally improved mesenchymal stem cells to better treat myocardial infarction. Stem Cells Int. 2018;2018:7045245.
  • Gao L, Yi M, Xing M, et al. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B. 2020;8(34):7713–7722.
  • Chen Y, Li C, Li C, et al. Tailorable hydrogel improves retention and cardioprotection of intramyocardial transplanted mesenchymal stem cells for the treatment of acute myocardial infarction in mice. J Am Heart Assoc. 2020;9(2):e013784.
  • Grebenyuk S, Ranga A. Engineering organoid vascularization. Front Bioeng Biotechnol. 2019;7:39.
  • Schwartz MP, Hou Z, Propson NE, et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci U S A. 2015;112(40):12516–12521.
  • McKinnon DD, Kloxin AM, Anseth KS. Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater Sci. 2013;1(5):460–469.
  • Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–1021.
  • Du J-l, Poo M-m. Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature. 2004;429(6994):878–883.
  • Li A, Hokugo A, Yalom A, et al. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials. 2014;35(31):8780–8790. Oct
  • Löwik DWPM, Shklyarevskiy IO, Ruizendaal L, et al. A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv Mater. 2007;19(9):1191–1195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.