961
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Microbial surfactants in nanotechnology: recent trends and applications

ORCID Icon & ORCID Icon
Pages 294-310 | Received 10 Dec 2020, Accepted 09 Apr 2021, Published online: 24 Jun 2021

References

  • Christopher FC, Ponnusamy SK, Ganesan JJ, et al. Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis – a comprehensive review. IET Nanobiotechnol. 2019;13(3):243–249.
  • Morsy SMI. Role of surfactants in nanotechnology and their applications. Int J Curr Microbiol Appl Sci. 2014;3:237–260.
  • Kiran GS, Selvin J, Manilal A, et al. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit Rev Biotechnol. 2011;31(4):354–364.
  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • Hu X, Li D, Gao Y, et al. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environ Int. 2016;94:8–23.
  • Rangarajan V, Majumder S, Sen R. Biosurfactant-mediated nanoparticle synthesis: a green and sustainable approach. In: Mulligan CN, Sharma SK, Mudhoo A, editors. Biosurfactants: research trends and applications. Boca Raton (FL): CRC Press; 2014. p. 217–229.
  • Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2014;5:1–10.
  • Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed. 2017;15(4):241–248.
  • Singh P, Kim YJ, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599.
  • Iravani S, Zolfaghari B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int. 2013;2013:1–725.
  • Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces. 2014;121:474–483.
  • Krajina BA, Proctor AC, Schoen AP, et al. Biotemplated synthesis of inorganic materials: an emerging paradigm for nanomaterial synthesis inspired by nature. Prog Mater Sci. 2018;91:1–23.
  • Li B, You N, Liang Y, et al. Organic templates for inorganic nanocrystal growth. Energy Environ Mater. 2019;2(1):38–54.
  • Vijayakumar S, Saravanan S. Biosurfactants-types, sources and applications. Res J Microbiol. 2015;10:181–192.
  • Bhardwaj G, Cameotra SS, Chopra HK. Biosurfactants from fungi: a review. J Pet Environ Biotechnol. 2013;4:1–6.
  • Guenic SL, Chaveriat L, Lequart V, et al. Renewable surfactants for biochemical applications and nanotechnology. J Surfactants Deterg. 2019;22(1):5–21.
  • Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol. 2015;45(14):1522–1554.
  • Rosenberg E, Ron EZ. High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol. 1999;52(2):154–162.
  • Jahan R, Bodratti AM, Tsianou M, et al. Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci. 2020;275:1–22.
  • Drakontis CL, Amin S. Biosurfactants: formulations, properties, and applications. Curr Opin Colloid Interface Sci. 2020;48:77–90.
  • Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389–397.
  • Nitschke M, Costa S, Contiero J. Rhamnolipids and PHAs: recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 2011;46(3):621–630.
  • Nitschke M, Silva SS. Recent food applications of microbial surfactants. Crit Rev Food Sci Nutr. 2018;58(4):631–638.
  • Mnif I, Ghribi D. Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol. 2015;31(7):1001–1020.
  • Fenibo EO, Ijoma GN, Selvarajan R, et al. Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms. 2019;7(11):581–529.
  • Varvaresou A, Iakovou K. Biosurfactants in cosmetics and biopharmaceuticals. Lett Appl Microbiol. 2015;61(3):214–223.
  • Naughton PJ, Marchant R, Naughton V, et al. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127(1):12–28.
  • Mnif I, Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric. 2016;96(13):4310–4320.
  • Bouassida M, Fourati N, Ghazala I, et al. Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Eng Life Sci. 2018;18(1):70–77.
  • Mulligan CN, Sharma SK, Mudhoo A, et al. Green chemistry and biosurfactant research. In: Mulligan CN, Sharma SK, Mudhoo A, editors. Biosurfactants: research trends and applications. Boca Raton (FL): CRC Press; 2014. p. 1–30.
  • Banat IM, Satpute SK, Cameotra SS, et al. Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol. 2014;18:252–259.
  • Sekhon KK, Khanna S, Cameotra SS. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release. Microb Cell Fact. 2011;10:1–10.
  • Dobler L, Vilela LF, Almeida RV, et al. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol. 2016;33(1):123–135.
  • Invally K, Sancheti A, Ju KW. A new approach for downstream purification of rhamnolipid biosurfactants. Food Bioprod Proc. 2019;114:122–131.
  • Dhanarajan G, Sen R. Cost analysis of biosurfactant production from a scientist’s perspective. In: Kosaric N, Sukan FV, editors. Biosurfactants production and utilization – processes, technologies, and economics. Boca Raton (FL): CRC Press; 2015. p. 153–161.
  • Bettennhause C. Rhamnolipids rise as a green surfactant [Internet]. 2020 Jun 13 [cited 2021 Jan 29]. Available from: https://cen.acs.org/materials/biomaterials/Rhamnolipids-rise-green-surfactant/98/i23
  • Nitschke M, Costa S. Biosurfactants in food industry. Trends Food Sci Technol. 2007;18(5):252–259.
  • 360 Research Reports. Global microbial biosurfactants market research report 2020 [Internet]. 2020. Jan 02 [cited 2020 Aug 23]. Available from: https://www.360researchreports.com/global-microbial-biosurfactants-market-15046865
  • Wittgens A, Rosenau F. Heterologous rhamnolipid biosynthesis: advantages, challenges, and the opportunity to produce tailor-made rhamnolipids. Front Bioeng Biotechnol. 2020;8:594010–594011.
  • Kvítek L, Panáček A, Soukupová J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs. J Phys Chem C. 2008;112(15):5825–5834.
  • Chou KS, Lai YS. Effect of polyvinyl pyrrolidone molecular weights on the formation of nano-sized silver colloids. Mater Chem Phys. 2004;83(1):82–88.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.
  • Reddy AS, Chen CY, Chen CC, et al. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J Nanosci Nanotechnol. 2009;9(11):6693–6699.
  • Reddy AS, Chen CY, Baker SC, et al. Synthesis of silver nanoparticles using surfactin: a biosurfactant as stabilizing agent. Mater Lett. 2009;63(15):1227–1230.
  • Kiran GS, Sabu A, Selvin J. Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol. 2010;148(4):221–225.
  • Farias CBB, Silva AF, Rufino RD, et al. Synthesis of silver nanoparticles using a biosurfactant produced in low-cost medium as stabilizing agent. Electron J Biotechnol. 2014;17(3):122–125.
  • Rane AN, Baikar VV, Kumar VR, et al. Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol. 2017;8:1–12.
  • Gómez-Graña S, Perez-Ameneiro M, Vecino X, et al. Biogenic synthesis of metal nanoparticles using a biosurfactant extracted from corn and their antimicrobial properties. Nanomaterials. 2017;7(6):139–114.
  • Bakur A, Niu Y, Kuang H, et al. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Expr. 2019;9(1):1–9.
  • Shikha S, Chaudhuri SR, Bhattacharyya MS. Facile one pot greener synthesis of sophorolipid capped gold nanoparticles and its antimicrobial activity having special efficacy against Gram negative Vibrio cholerae. Sci Rep. 2020;10(1):1–13.
  • Kasture M, Singh S, Patel P, et al. Multiutility sophorolipids as nanoparticle capping agents: synthesis of stable and water dispersible Co nanoparticles. Langmuir. 2007;23(23):11409–11412.
  • Singh BR, Dwivedi S, Al-Khedhairy AA, et al. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloids Surf B Biointerfaces. 2011;85(2):207–213.
  • Palanisamy P, Raichur AM. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C. 2009;29(1):199–204.
  • Narayanan J, Ramji R, Sahu H, et al. Synthesis, stabilisation and characterisation of rhamnolipid-capped ZnS nanoparticles in aqueous medium. IET Nanobiotechnol. 2010;4(2):29–34.
  • Basak G, Das D, Das N. Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. J Microbiol Biotechnol. 2014;24(1):87–96.
  • Baccile N, Noiville R, Stievano L, et al. Sophorolipids-functionalized iron oxide nanoparticles. Phys Chem Chem Phys. 2013;15(5):1606–1620.
  • Krishnan N, Velramar B, Pandiyan R, et al. Anti-pseudomonal and antiendotoxic effects of surfactin-stabilized biogenic silver nanocubes ameliorated wound repair in streptozotocin-induced diabetic mice. Artif Cells Nanomed Biotechnol. 2018;46(3):488–499.
  • Eswari JS, Dhagat S, Mishra P. Biosurfactant assisted silver nanoparticle synthesis: a critical analysis of its drug design aspects. Adv Nat Sci Nanosci Nanotechnol. 2018;9:1–8.
  • Mendrek B, Chojniak J, Libera M, et al. Silver nanoparticles formed in bio- and chemical syntheses with biosurfactant as stabilizing agent. J Dispersion Sci Technol. 2017;38(11):1647–1655.
  • Hazra C, Kundu D, Chatterjee A, et al. Poly(methyl methacrylate) (core)–biosurfactant (shell) nanoparticles: size controlled sub-100 nm synthesis, characterization, antibacterial activity, cytotoxicity and sustained drug release behavior. Colloids Surf A. 2014;449:96–113.
  • Ahire JJ, Robertson DD, van Reenen AJ, et al. Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Mater Sci Eng C. 2017;77:27–33.
  • Barnthip N, Pinyakong O. Preparation and properties of gelatin nanofibers containing lipopeptide biosurfactant by electrospinning technique as the prototype of wound covering and healing materials. Mater Res Express. 2018;5(9):095401–095407.
  • Marangon CA, Martins VCA, Ling MH, et al. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020;12(5):5488–5499.
  • Bettencourt AF, Tomé C, Oliveira T, et al. Exploring the potential of chitosan-based particles as delivery-carriers for promising antimicrobial glycolipid biosurfactants. Carbohydr Polym. 2021;254:1–12.
  • Raza ZA, Khalid ZM, Khan MS, et al. Surface properties and sub-surface aggregate assimilation of rhamnolipid surfactants in different aqueous systems. Biotechnol Lett. 2010;32(6):811–816.
  • Garidel P, Kaconis Y, Heinbockel L, et al. Self-organisation, thermotropic and lyotropic properties of glycolipids related to their biological implications. Open Biochem J. 2015;9:49–72.
  • Rodrigues LR. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci. 2015;449:304–316.
  • Nozhat Z, Asadi A, Zahri S. Properties of surfactin C-15 nanopeptide and its cytotoxic effect on human cervix cancer (HeLa) cell line. J Nanomater. 2012;2012:1–5.
  • Müller F, Hönzke S, Luthardt WO, et al. Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. Eur J Pharm Biopharm. 2017;116:31–37.
  • Vasudevan S, Prabhune AA. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging. R Soc Open Sci. 2018;5(2):170865–170814.
  • Peng S, Li Z, Zou L, et al. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: an in vitro and in vivo study. J Agric Food Chem. 2018;66(6):1488–1497.
  • DeSanto K, inventor. Pharmaceutical peptides and rhamnolipid liposomes. United States patent US 20190133947. 2019 May 09.
  • DeSanto K, inventor. Using peptides encapsulated in rhamnolipid liposomes for agriculture applications. United States patent US 20190021310. 2019 Jan 24.
  • Niaz T, Shabbir S, Noor T, et al. Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT Food Sci Technol. 2019;116:108583–108513.
  • Niaz T, Imran M. Diffusion kinetics of nisin from composite coatings reinforced with nano-rhamnosomes. J Food Eng. 2021;288:110143.
  • Al-Bukhaiti WQ, Noman A, Wang H. Emulsions: micro and nano-emulsions and their applications in industries - a mini-review. Int J Agric Innovat Res. 2018;7:69–73.
  • Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. 2019;3:1–21.
  • Gupta A, Eral HB, Hatton TA, et al. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826–2841.
  • Arancibia C, Riquelme N, Zúñiga R, et al. Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innovat Food Sci Emerg Technol. 2017;44:159–166.
  • Doost AS, Devlieghere F, Dirckx A, et al. Fabrication of Origanum compactum essential oil nanoemulsions stabilized using Quillaja saponin biosurfactant. J Food Proc. Preserv. 2018;42:1–12.
  • Bai L, McClements DJ. Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids. J Colloid Interface Sci. 2016;479:71–79.
  • Pavoni L, Perinelli DR, Bonacucina G, et al. An overview of microand nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nanomaterials. 2020;10(1):135.
  • Joe MM, Bradeeba K, Parthasarathi R, et al. Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against food associated microorganisms. J Taiwan Inst Chem Eng. 2012;43(2):172–180.
  • Lewińska A, Domżał-Kędzia M, Jaromin A, et al. nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics. 2020;12(10):953–921.
  • Worakitsiri P, Pornsunthorntawee O, Thanpitcha T, et al. Synthesis of polyaniline nanofibers and nanotubes via rhamnolipid biosurfactant templating. Synth Metals. 2011;161(3–4):298–306.
  • Faas R, Pohle A, Moß K, et al. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins. Biotechnol Rep (Amst). 2017;16:1–4.
  • Balakrishnan G, Déniel M, Nicolai T, et al. Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environ Sci Nano. 2019;6:315–324.
  • Huang W, Lang Y, Hakeem A, et al. Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomedicine. 2018;13:1723–1736.
  • Kundu D, Hazra C, Chatterjee A, et al. Surfactin-functionalized poly(methyl methacrylate) as an eco-friendly nano-adsorbent: from size controlled scalable fabrication to adsorptive removal of inorganic and organic pollutants. RSC Adv. 2016;6(84):80438–80454.
  • Shu Q, Wu J, Chen Q. Synthesis, characterization of liposomes modified with biosurfactant MEL-A loading betulinic acid and its anticancer effect in HepG2 cell. Molecules. 2019;24(21):3939–3917.
  • Bansal S, Singh J, Kumari U, et al. Development of biosurfactant-based graphene quantum dot conjugate as a novel and fluorescent theranostic tool for cancer. Int J Nanomedicine. 2019;14:809–818.
  • Rodrigues LR, Teixeira JA. Biomedical and therapeutic applications of biosurfactants. In: Sen R, editor. Biosurfactants - advances in experimental medicine and biology. New York (NY): Springer; 2010. p.75–87.
  • Fracchia L, Banat J, Cavallo M, et al. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng. 2015;2(3):144–162.
  • Ortiz A, Teruel JA, Espuny MJ, et al. Effects of dirhamnolipid on the structural properties of phosphatidylcholine membranes. Int J Pharm. 2006;325(1–2):99–107.
  • Sotirova AV, Spasova DI, Galabova DN, et al. Rhamnolipid-biosurfactant permeabilizing effects on Gram-positive and Gram-negative bacterial strains. Curr Microbiol. 2008;56(6):639–644.
  • Chojniak J, Libera M, Król E, et al. A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi. Ecotoxicology. 2018;27:352–359.
  • Vollenbroich D, Ozel M, Vater J, et al. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals. 1997;25(3):289–297.
  • Borsanyiova M, Patil A, Mukherji R, et al. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha). 2016;61(1):85–89.
  • Smith ML, Gandolfi S, Coshall PM, et al. Biosurfactants: a covid-19 perspective. Front Microbiol. 2020;11:1–8.
  • Subramaniam MD, Venkatesan D, Iyer M, et al. Biosurfactants and anti-inflammatory activity: a potential new approach towards COVID-19. Curr Opin Environ Sci Health. 2020;17:72–81.
  • Çelik PA, Manga EB, Çabuk A, et al. Biosurfactants’ potential role in combating COVID-19 and similar future microbial trends. Appl Sci. 2021;11:1–16.
  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575.
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681.
  • Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543.
  • Janek T, Krasowska A, Czyżnikowska Ż, et al. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Front Microbiol. 2018;9:2441– 2414.
  • Gomes MZV, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control. 2012;25(2):441–447.
  • McLandsborough L, Rodriguez A, Pérez-Conesa D, et al. Biofilms: at the interface between biophysics and microbiology. Food Biophys. 2006;1(2):94–114.
  • Nguyen BVG, Nagakubo T, Toyofuku M, et al. Synergy between sophorolipid biosurfactant and SDS increases the efficiency of P. aeruginosa biofilm disruption. Langmuir. 2020;36(23):6411–6420.
  • Qayyum S, Khan AU. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. Med Chem Commun. 2016;7(8):1479–1498.
  • Wu YS, Ngai SC, Goh BH, et al. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol. 2017;8:1–22.
  • Dwivedi S, Saquib Q, Al-Khedhairy AA, et al. Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B. 2015;132:290–298.
  • Li K, Liu W, Ni Y, et al. Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B. 2017;5(25):4811–4826.
  • Amani H. Synergistic effect of biosurfactant and nanoparticle mixture on microbial enhanced oil recovery. J Surfact Deterg. 2017;20(3):589–597.
  • Pi G, Mao L, Bao M, et al. Preparation of oil-in-seawater emulsions based on environmentally benign nanoparticles and biosurfactant for oil spill remediation. ACS Sustain Chem Eng. 2015;3(11):2686–2693.
  • Khademolhosseini R, Jafari A, Mousavi SM, et al. Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery. RSC Adv. 2019;9(35):20281–20294.
  • Ferreira AJ, Cemlyn-Jones J, Cordeiro CR. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol. 2013;19(1):28–37.
  • Sahu SC, Hayes AW. Toxicity of nanomaterials found in human environment: a literature review. Toxicol Res Appl. 2017;1:1–13.
  • Fernández-Luqueño F. Advantages and drawbacks of the nanotechnology and biotechnology toward shaping a global sustainable development. Biosci Biotechnol Res Asia. 2019;16:693–695.
  • Ziarati P, Shirkhan F, Mostafidi M, et al. A comprehensive review: toxicity of nanotechnology in the food industry. J Med Discov. 2018;3(2):jmd18010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.