922
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Wheat germ lipase: isolation, purification and applications

, , &
Pages 184-200 | Received 24 Sep 2020, Accepted 07 Apr 2021, Published online: 15 Jul 2021

References

  • Guan Z, Fu J-P, He Y-H. Biocatalytic promiscuity: lipase-catalyzed asymmetric aldol reaction of heterocyclic ketones with aldehydes. Tetrahedron Lett. 2012;53(37):4959–4961.
  • Sánchez DA, Tonetto GM, Ferreira ML. Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol Bioeng. 2018;115:6–24.
  • Ganesh PS, Vishnupriya S, Vadivelu J, et al. Intracellular survival and innate immune evasion of Burkholderia cepacia: improved understanding of quorum sensing‐controlled virulence factors, biofilm, and inhibitors. Microbiol Immunol. 2020;64(2):87–98.
  • Barriuso J, Eugenia M, Alicia V, et al. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: a review. Biotechnol Adv. 2016;34(5):874–885.
  • Rodrigues RC, Fernandez-Lafuente R. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B Enzym. 2010;64(1–2):1–20.
  • Jaeger KE, Eggert T. Lipases for biotechnology. Curr Opin Biotechnol. 2002;13(4):390–397.
  • Mounguengui RWM, Brunschwig C, Baréa B, et al. Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog Energy Combust Sci. 2013;39(5):441–456.
  • Feldman M, Kislev ME. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J Plant Sci. 2007;55(3):207–221.
  • Crops [Internet] Food and Agriculture Organization of the United Nations; 2020 [cited 2020 Sep 21]. Available from: http://www.fao.org/faostat/en/#data/QC/.
  • Boukid F, Folloni S, Ranieri R, et al. A compendium of wheat germ: separation, stabilization and food applications. Trends Food Sci Technol. 2018;78:120–133.
  • Sullivan B, Howe MA. Lipases of Wheat. I. J Am Chem Soc. 1933;55(1):320–324.
  • Singer TP, Hofstee BH. Studies on wheat germ lipase; methods of estimation, purification, and general properties of the enzyme. Arch Biochem. 1948;18:229–243.
  • Singer TP. On the mechanism of enzyme inhibition by sulfhydryl reagents. J Biol Chem. 1948;174:11–21.
  • O'Connor J, Harwood JL. Solubilization and purification of membrane-bound lipases from wheat flour. J Cereal Sci. 1992;16(2):141–152.
  • Stauffer CE, Glass RL. The glycerol ester hydrolases of wheat germ. Cereal Chem. 1966;43:644–657.
  • Kapranchikov VS, Zherebtsov NA, Popova TN. Purification and characterization of lipase from wheat. (Triticum aestivum L.). Germ Appl Biochem Microbiol. 2004;40(1):84–88.
  • Anan'eva ON, Rudyuk VF. Study of certain properties of lipases from castor-oil plant (Ricinus communis) and sunflower (Helianthus annuus) seeds. Prikl Biokhim Mikrobiol. 1978;14:32–37.
  • Köse K, Erol K, Köse DA, et al. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. Artif Cells Nanomed Biotechnol. 2017;45:574–583.
  • Erol K, Köse K, Köse DA, et al. Separation and purification of lipase using Cu nanoparticle embedded poly(HEMA-MATrp) cryogels. Hittite J Sci Eng. 2015;1(1):43–50.
  • Erol K. DNA adsorption via Co(II) immobilized cryogels. J Macromol Sci Part A. 2016;53(10):629–635.
  • Erol K, Bolat M, Tatar D, et al. Synthesis, characterization and antibacterial application of silver nanoparticle embedded composite cryogels. J Mol Structure. 2020;1200:127060.
  • Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. J Macromol Sci Part A. 2017;54(11):867–875.
  • Erol B, Erol K, Gökmeşe E. The effect of the chelator characteristics on insulin adsorption in immobilized metal affinity chromatography. Process Biochem. 2019;83:104–113.
  • Ollis DL, Cheah E, Cygler M, et al. The α/β hydrolase fold. Protein Eng. 1992;5:197–211.
  • Saunders CM. The biochemistry and molecular biology of wheat grain lipases. Cardiff (UK): University of Wales; 1999.
  • Lenfant N, Hotelier T, Velluet E, et al. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res. 2012;41:D423–D429.
  • Bertoni M, Kiefer F, Biasini M, et al. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scien Rep. 2017;7:10480.
  • Bienert S, Waterhouse A, de Beer TAP, et al. The SWISS-MODEL repository—new features and functionality. Nucleic Acids Res. 2016;45:D313–D319.
  • Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30(S1):S162–S173.
  • Studer G, Rempfer C, Waterhouse AM, et al. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics. 2019;36:1765–1771.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303.
  • SWISS-MODEL [Internet] Q8L5T0 (Q8L5T0_WHEAT) Triticum aestivum (Wheat); 2020 [cited 2020 Sep 21] Available from: https://swissmodel.expasy.org/repository/uniprot/Q8L5T0.
  • Brandolini A, Hidalgo A. Wheat germ: not only a by-product. Int J Food Scien Nutrit. 2012;63(sup1):71–74.
  • Rose DJ, Pike OA. A simple method to measure lipase activity in wheat and wheat bran as an estimation of storage quality. J Amer Oil Chem Soc. 2006;83(5):415–419.
  • Gili RD, Penci MC, Torrez Irigoyen MR, et al. Effect of wheat germ heat treatment by fluidised bed on the kinetics of lipase inactivation. Food Bioprocess Technol. 2018;11(5):1002–1011.
  • Firestone D. Official methods and recommended practices of the American Oil Chemists’ Society. Champaign (IL): AOCS Press; 2009.
  • Xu D, Jin J, Shen T, et al. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase. Bull Environ Contam Toxicol. 2013;91(5):577–582.
  • Rajeshwara AN, Prakash V. Effect of denaturant and cosolvents on the stability of wheat germ lipase. J Agric Food Chem. 1996;44(3):736–740.
  • Rao KS, Rajendran S, Rajeshwara AN, et al. Structural stability of lipase from wheat germ in alkaline pH. J Protein Chem. 1991;10:291–299.
  • Rajendran S, Rao KS, Prakash V. Effect of pH in the acidic region on the structural integrity of lipase from wheat germ. Indian J Biochem Biophys. 1990;199(27):300–310.
  • Casassa EF, Eisenberg H. Partial specific volumes and refractive index increments in multicomponent systems. J Phys Chem. 1961;65(3):427–433.
  • Robinson DR, Jencks WP. The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J Am Chem Soc. 1965;87(11):2462–2470.
  • Rajeshwara AN, Prakash V. Interaction of guanidine hydrochloride and guanidine thiocyanate with wheat germ lipase. Indian J Biochem Biophys. 1994;31:315–321.
  • Pancholy SK, Lynd JQ. Characterization of wheat germ lipase. Phytochemistry. 1972;11(2):643–645.
  • Korneeva OS, Popova TN, Kapranchikov VS. Identification of catalytically active groups of wheat (Triticum aestivum) germ lipase. Appl Biochem Microbiol. 2008;45:349–355.
  • Aehle W. Enzymes in industry: production and applications. 3rd ed. Weinheim: Viley-VCh; 2007.
  • Guisan MJ. Immobilization of enzymes and cells. New York: Springer Science & Business Media; 2006.
  • Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 2019;37(5):746–770.
  • Pagliaro M. Sol–gel catalysts for synthetic organic chemistry: milestones in 30 years of successful innovation. J Sol-Gel Sci Technol. 2020;95(3):551–561.
  • Pinheiro BB, Rios NS, Rodríguez Aguado E, et al. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol. 2019;130:798–809.
  • Abd FM, Attan MN, Zakaria Z, et al. Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J Biotechnol. 2018;280:19–30.
  • Arana-Peña S, Riosa NS, Mendez-Sanchez C, et al. Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: avoiding enzyme release during multilayer production. Enzyme Microb Technol. 2020;137:109535.
  • Benaglia M, Puglisi A. Catalyst immobilization: methods and applications. Weinheim: Viley-VCH; 2019.
  • Wang L, Guan S, Bai J, et al. Enzyme immobilized in BioMOFs: facile synthesis and improved catalytic performance. Int J Biol Macromol. 2020;144:19–28.
  • Kosugi Y, Igusa H, Tomizuka N. Glyceride production from high free fatty acid rice bran oil using immobilized lipase. J Jpn Oil Chem Soc. 1987;36(10):769–776.
  • Meyer ER, Scheper T, Hitzmann B, et al. Immobilization of enzymes in liquid membranes for enantioselective hydrolysis. Biotechnol Tech. 1988;2(2):127–132.
  • Kloosterman M, Weijnen JGJ, De VN, et al. Octa-O-Acetyl-Sucrose: regioselective deacetylations by lipolytic enzymes. J Carbohyd Chem. 1989;8(5):693–704.
  • Takeuchi S, Omodaka Z, Hasegawa K, et al. Temperature‐responsive graft copolymers for immobilization of enzymes. Makromol Chem. 1993;194(7):1991–1999.
  • Reetz MT, Simpelkamp J, Zonta A. Lipases immobilized in sol-gel processed hydrophobic materials. 1998 US5817493.
  • Nanda S, Scott AI. A highly efficient chemoselective synthesis of 3,5-diketoesters by lipase-catalyzed transesterification: application to the resolution of secondary alcohols. J Mol Catal B Enzym. 2004;30(1):1–12.
  • Koszelewski D, Redzej A, Ostaszewski R. The study on efficient hydrolases immobilization for the kinetic resolution of the α-acetoxyamides. J Mol Catal B Enzym. 2007;47(1–2):51–57.
  • Sharma S, Gupta MN. Alginate as a macroaffinity ligand and an additive for enhanced activity and thermostability of lipases. Biotechnol Appl Biochem. 2001;33(3):161–165.
  • Pierozan MK, Oestreicher EG, Oliveira JV, et al. Studies on immobilization and partial characterization of lipases from wheat seeds (Triticum aestivum). Appl Biochem Biotechnol. 2011;165(1):75–86.
  • Brady D, Jordaan J, Simpson C, et al. Spherezymes: a novel structured self-immobilisation enzyme technology. BMC Biotech. 2008;8:8.
  • Naya M, Imai M. Impact of physicochemical character of hydrophobic porous carrier on reactivity of immobilized lipase progressing toward higher reaction rate and high yield in repeated use. Procedia Eng. 2012;42:1004–1015.
  • Naya M, Imai M. Advantages of supercritical carbon dioxide for lipid hydrolysis by immobilized lipase with higher reaction rate and reproducible of repeated use. J Chem Technol Biotechnol. 2016;91(10):2620–2630.
  • Jędrzejewska H, Ostaszewski R. Studies toward stereoselective bionanocatalysis on gold nanoparticles. J Mol Catal B Enzym. 2013;90:12–16.
  • Xiaole X, Yu X, Xiaorong W, et al. Method for immobilizing wheat germ lipase. CN103045580A; 2012.
  • Alkhatib M, Bahrudin NA, Salleh HM, et al. Lipase immobilization on fibers grafted with polyglycidyl methachrylate. IIUM Engineering J. 2019;20:1–23.
  • Brouillard J, Ouellet L. Acid phosphatase of wheat germ. Chromatographic analysis. Can J Biochem. 1965;43:1899–1905.
  • Fink AL, Hay GW. The enzymic deacylation of esterified mono- and di-saccharides. I. The isolation and purification of an esterase from wheat germ lipase. Can J Biochem. 1969;47:135–142.
  • Kawarasaki Y, Nakano H, Yamane T. Purification and some properties of wheat germ acid phosphatases. Plant Sci. 1996;119(1–2):67–77.
  • Harold FM, Baarda JR, Baron C, et al. Dio 9 and chlorhexidine: inhibitors of membrane-bound ATPase and of cation transport in Streptococcus faecalis. Biochim Biophys Acta (BBA) Biomembranes. 1969;183(1):129–136.
  • Waymack PP, Van Etten RL. Isolation and characterization of a homogeneous isoenzyme of wheat germ acid phosphatase. Arch Biochem Biophys. 1991;288:621–633.
  • Kelleher BP, Willeford KO, Simpson AJ, et al. Acid phosphatase interactions with organo-mineral complexes: influence on catalytic activity. Biogeochem. 2004;71(3):285–297.
  • Tyc K, Kellenberger C, Filipowicz W. Purification and characterization of wheat germ 2',3'-cyclic nucleotide 3'-phosphodiesterase. J Biol Chem. 1987;262(27):12994–13000.
  • Konietzny U, Greiner R, Jany K-D. Purification and characterization of a phytase from spelt. J Food Biochemistry. 1994;18(3):165–183.
  • Cazenave C, Frank P, Büsen W. Characterization of ribonuclease H activities present in two cell-free protein synthesizing systems, the wheat germ extract and the rabbit reticulocyte lysate. Biochimie. 1993;75:113–122.
  • Cummins I, Burnet M, Edwards R. Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol Plant. 2001;113(4):477–485.
  • Polya GM, Haritou M. Purification and characterization of two wheat-embryo protein phosphatases. Biochem J. 1988;251(2):357–363.
  • Pierozan MK, da Costa RJ, Antunes OAC, et al. Optimization of extraction of lipase from wheat seeds (Triticum aestivum) by response surface methodology. J Agric Food Chem. 2009;57:9716–9721.
  • Menzi R. 1970. Method of making dried pasta having a protein network that withstands cooking. US 3520702.
  • Gazzani G. 1993. Composition for the cleaning of skin, scalp and hair. EP 0530865.
  • Khor HT, Tan NH, Chua CL. Lipase‐catalyzed hydrolysis of palm oil. J Am Oil Chem Soc. 1986;63(4):538–540.
  • Altamura M, Cesti P, Francalanci F, et al. A new chemoenzymatic approach to the synthesis of penems. J Chem Soc Perkin Trans 1. 1989;(7):1225–1229.
  • Darmkjaer DL, Petersen M, Wengel J. Lipase catalyzed diastereoselective deacetylations of anomeric mixtures of peracetylated 2′-deoxynucleosides. Nucleosides Nucleotides. 1994;13(8):1801–1807.
  • Meister AC, Nieger M, Bräse S. Synthesis of 4-hydroxy-5-methyl- and 4-hydroxy-6-methylcyclohexenones by PdII-catalyzed oxidation and lipase-catalyzed hydrolysis. Eur J Org Chem. 2012;2012(27):5373–5380.
  • Houng J-Y, Hsieh C-L. 1996. United States Patent No. 5,552,317.
  • Jungmann V, Waldmann H. An enzymatic protecting group strategy for the synthesis of nucleopeptides. Tetrahedron Lett. 1998;39(10):1139–1142.
  • Koszelewski D, Paprocki D, Brodzka A, et al. Enzyme mediated kinetic resolution of δ-hydroxy-α,β-unsaturated esters as a route to optically active δ-lactones. Tetrahedron: Asymm. 2017;28(6):809–818.
  • Koszelewski D, Ostaszewski R. The studies on chemoselective promiscuous activity of hydrolases on acylals transformations. Bioorg Chem. 2019;93:102825.
  • Szymanski W, Ostaszewski R. Multicomponent diversity and enzymatic enantioselectivity as a route towards both enantiomers of α-amino acids—a model study. Tetrahedron Asymm. 2006;17(18):2667–2671.
  • Szymanski W, Ostaszewski R. Toward stereocontrolled, chemoenzymatic synthesis of unnatural peptides. Tetrahedron. 2008;64(14):3197–3203.
  • Szymanski W, Ostaszewski R. Chemoenzymatic synthesis of enantiomerically enriched α-hydroxyamides. J Mol Catal B Enzym. 2007;47(3–4):125–128.
  • Szymanski W, Zwolinska M, Ostaszewski R. Studies on the application of the Passerini reaction and enzymatic procedures to the synthesis of tripeptide mimetics. Tetrahedron. 2007;63(32):7647–7653.
  • Xia X, Wang Y-H, Yang B, et al. Wheat germ lipase catalyzed kinetic resolution of secondary alcohols in non-aqueous media. Biotechnol Lett. 2009;31(1):83–87.
  • Żądło-Dobrowolska A, Koszelewski D, Paprocki D, et al. Enzyme-promoted asymmetric tandem passerini reaction. ChemCatChem. 2017;9(15):3047–3053.
  • Zysk M, Zadlo A, Brodzka A, et al. The unexpected kinetic effect of enzyme mixture: the case of enzymatic esterification. J Mol Catal B Enzym. 2014;102:225–229.
  • Brodzka A, Koszelewski D, Ostaszewski R. The studies on chemoenzymatic synthesis of Femoxetine. J Mol Catal B Enzym. 2012;82:96–101.
  • Brodzka A, Koszelewski D, Zysk M, et al. The mechanistic promiscuity of the enzymatic esterification of chiral carboxylic acids. Catal Commun. 2018;106:82–86.
  • Brodzka A, Koszelewski D, Cwiklak M, et al. Studies on the chemoenzymatic synthesis of 3-phenyl-GABA and 4-phenyl-pyrrolid-2-one: the influence of donor of the alkoxy group on enantioselective esterification. Tetrahedron Asymm. 2013;24(8):427–433.
  • Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications. Process Biochem. 2012;47(4):555–569.
  • Koszelewski D, Paprocki D, Madej A, et al. Enzymatic tandem approach to Knoevenagel condensation of acetaldehyde with acidic methylene compounds in organic media. Eur J Org Chem. 2017;2017(31):4572–4579.
  • Wilk M, Trzepizur D, Koszelewski D, et al. Synthesis of (E)-α,β-unsaturated carboxylic esters derivatives from cyanoacetic acid via promiscuous enzyme-promoted cascade esterification/Knoevenagel reaction. Bioorg Chem. 2019;93:102816.
  • Wu L-L, Xiang Y, Yang D-C, et al. Biocatalytic asymmetric Mannich reaction of ketimines using wheat germ lipase. Catal Sci Technol. 2016;6(11):3963–3970.
  • Ding X, Dong C-L, Guan Z, et al. Concurrent asymmetric reactions combining photocatalysis and enzyme catalysis: direct enantioselective synthesis of 2,2-disubstituted indol-3-ones from 2-arylindoles. Angew Chem Int Ed. 2019;58(1):118–124.
  • Reetz MT, Mondière R, Carballeira JD. Enzyme promiscuity:first protein-catalyzed Morita–Baylis–Hillman reaction. Tetrahedron Lett. 2007;48(10):1679–1681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.