774
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

A review on biomass-derived levulinic acid for application in drug synthesis

, , ORCID Icon, , &
Pages 220-253 | Received 19 Jul 2020, Accepted 20 May 2021, Published online: 11 Jul 2021

References

  • Birol F. World energy outlook. Paris, France: International Energy Agency; 2011..
  • Yan K, Jarvis C, Gu J, et al. Production and catalytic transformation of levulinic acid: a platform for speciality chemicals and fuels. Sust Energ Rev. 2015;51:986–997.
  • Morone A, Apte M, Pandey R. Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renew Sust Energ Rev. 2015;51:548–565.
  • Mukherjee A, Dumont M-J, Raghavan V. Sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy. 2015;72:143–183.
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev. 2006;106(9):4044–4098.
  • Badgujar KC, Badgujar VC, Bhanage BM. A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Process Technol. 2020;197.
  • Weingarten R, Tompsett GA, Conner Jr WC, et al. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. J Catal. 2011;279(1):174–182.
  • Tolan JS. Iogen’s demonstration process for producing ethanol from cellulosic biomass. In: Biorefineries‐industrial processes and products: status quo and future directions. New Jersey, USA: Wiley Online Library; 2005. p. 193–208.
  • Sharma A, Pareek V, Zhang D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev. 2015;50:1081–1096.
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83(1):1–11.
  • Kang S, Li X, Li B, et al. Effects of lignins on antioxidant biodiesel production in supercritical methanol. Energy Fuels. 2011;25(6):2746–2748.
  • Kang S, Yu J. Hydrophobic organic compounds from hydrothermal liquefaction of bacterial biomass. Biomass Bioenergy. 2015;74:92–95.
  • Ruiz JA, Juárez M, Morales M, et al. Biomass gasification for electricity generation: review of current technology barriers. Renew Sust Energ Rev. 2013;18:174–183.
  • Kang S, Li X, Fan J, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind Eng Chem Res. 2012;51(26):9023–9031.
  • Bozell JJ, Moens L, Elliott D, et al. Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl. 2000;28(3–4):227–239.
  • Sung K, Lee Mh, Cheong YJ, et al. Ir(triscarbene)‐catalyzed sustainable transfer hydrogenation of levulinic acid to γ‐valerolactone. Appl Organomet Chem. 2020;35(2):e6105.
  • Ye L, Han Y, Feng J, et al. A review about GVL production from lignocellulose: focusing on the full components utilization. Ind Crops Prod. 2020;144:112031.
  • De Souza RL, Yu H, Rataboul F, et al. 5-Hydroxymethylfurfural (5-HMF) production from hexoses: limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system. Challenges. 2012;3(2):212–232.
  • Timokhin BV, Baransky VA, Eliseeva GD. Levulinic acid in organic synthesis. Russ Chem Rev. 1999;68(1):73–84.
  • Van Putten RJ, van der Waal JC, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev. 2013;113(3):1499–597.
  • Girisuta B, Heeres HJ. Levulinic acid from biomass: synthesis and applications. Production of platform chemicals from sustainable resources. Berlin, Germany: Springer; 2017. p. 143–169.
  • Kuster B. Dehydration of D-fructose (formation of 5-hydroxymethyl-2-furaldehyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydr Res. 1977;54(2):165–176.
  • Yang Y, Xiang X, Tong D, et al. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO42-/ZrO2–Al2O3 solid catalyst. Bioresour Technol. 2012;116:302–306.
  • Nikolla E, Román-Leshkov Y, Moliner M, et al. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite. ACS Catal. 2011;1(4):408–410.
  • Verendel JJ, Church TL, Andersson PG. Catalytic one-pot production of small organics from polysaccharides. Synthesis. 2011;2011(11):1649–1677.
  • Omari KW, Besaw JE, Kerton FM. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem. 2012;14(5):1480–1487.
  • Qi X, Watanabe M, Aida TM, et al. Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chem. 2010;12(10):1855–1860.
  • Kang S, Yu J. An intensified reaction technology for high levulinic acid concentration from lignocellulosic biomass. Biomass Bioenergy. 2016;95:214–220.
  • Kamm B, Gerhardt M, Dautzenberg G. Catalytic processes of lignocellulosic feedstock conversion for production of furfural, levulinic acid, and formic acid-based fuel components. In: Suib SL, editor. New and future developments in catalysis: catalytic biomass conversion. Amsterdam, the Netherlands: Elsevier; 2013. p. 91–113.
  • Kang S, Fu J, Zhang G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sust Energ Rev. 2018;94:340–362.
  • Runge T, Zhang C. Two-stage acid-catalyzed conversion of carbohydrates into levulinic acid. Ind Eng Chem Res. 2012;51(8):3265–3270.
  • Rackemann DW, Doherty WOS. The conversion of lignocellulosics to levulinic acid. Biofuel Bioprod Biorefin. 2011;5(2):198–214.
  • Seretis A, Diamantopoulou P, Thanou I, et al. Recent advances in ruthenium-catalyzed hydrogenation reactions of renewable biomass-derived levulinic acid in aqueous media [review]. Front Chem. 2020;8(221):221.
  • Granados ML, Alonso DM. Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. Vol. 2. Singapore: World Scientific; 2018. p. 169–190.
  • Collier NJ, Rhodes LE. Photodynamic therapy for basal cell carcinoma: the clinical context for future research priorities. Molecules. 2020;25(22):5338.
  • Hami Z, Amini M, Ghazi-Khansari M, et al. Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-folate based polymeric micelle for controlled delivery of docetaxel. Colloids Surf B. 2014;116:309–317.
  • Su Z, Liang Y, Yao Y, et al. Polymeric complex micelles based on the double-hydrazone linkage and dual drug-loading strategy for pH-sensitive docetaxel delivery. J Mater Chem B. 2016;4(6):1122–1133.
  • Zong G, Aljewari H, Hu Z, et al. Revealing the pharmacophore of ipomoeassin F through molecular editing. Org Lett. 2016;18(7):1674–1677.
  • Spork AP, Buschleb M, Ries O, et al. Lead structures for new antibacterials: stereocontrolled synthesis of a bioactive muraymycin analogue. Chemistry. 2014;20(47):15292–15297.
  • Ding N, Zhang Z, Zhang W, et al. Synthesis and antibacterial evaluation of a series of oligorhamnoside derivatives. Carbohydr Res. 2011;346(14):2126–2135.
  • Ismail NS, El Dine RS, Hattori M, et al. Computer based design, synthesis and biological evaluation of novel indole derivatives as HCV NS3-4A serine protease inhibitors. Bioorg Med Chem. 2008;16(17):7877–7887.
  • Feng F, Sakoda Y, Ohyanagi T, et al. Novel thiosialosides tethered to metal nanoparticles as potent influenza A virus haemagglutinin blockers. Antivir Chem Chemother. 2013;23(2):59–65.
  • Osman NA, Mahmoud AH, Allara M, et al. Synthesis, binding studies and molecular modeling of novel cannabinoid receptor ligands. Bioorg Med Chem. 2010;18(24):8463–8477.
  • Malik Z, Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987;56(5):589–595.
  • Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B Biol. 1992;14(4):275–292.
  • Kortylewicz ZP, Nearman J, Baranowska-Kortylewicz J. Radiolabeled 5-iodo-3'-O-(17beta-succinyl-5alpha-androstan-3-one)-2'-deoxyuridine and its 5'-monophosphate for imaging and therapy of androgen receptor-positive cancers: synthesis and biological evaluation. J Med Chem. 2009;52(16):5124–5143.
  • Diaz JF, Andreu JM. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry. 1993;32(11):2747–2755.
  • Lee SW, Yun MH, Jeong SW, et al. Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. J Control Release. 2011;155(2):262–271.
  • Bae Y, Fukushima S, Harada A, et al. Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;115(38):4788–4791.
  • Mellado W, Magri NF, Kingston DG, et al. Preparation and biological activity of taxol acetates. Biochem Biophys Res Commun. 1984;124(2):329–336.
  • Etrych T, Sirova M, Starovoytova L, et al. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol Pharm. 2010;7(4):1015–1026.
  • Alani AW, Bae Y, Rao DA, et al. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31(7):1765–1772.
  • Zaiden M, Rutter M, Shpirt L, et al. CD44-targeted polymer-paclitaxel conjugates to control the spread and growth of metastatic tumors. Mol Pharm. 2018;15(9):3690–3699.
  • McDaniel JR, Bhattacharyya J, Vargo KB, et al. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew Chem Int Ed. 2013;52(6):1683–1687.
  • Barberot C, Moniot A, Allart-Simon I, et al. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem. 2018;146:139–146.
  • Chang CH, Lico LS, Huang TY, et al. Synthesis of the heparin-based anticoagulant drug fondaparinux. Angew Chem Int Ed. 2014;53(37):9876–9879.
  • Journo-Gershfeld G, Kapp D, Shamay Y, et al. Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm Res. 2012;29(4):1121–1133.
  • Chytil P, Etrych T, Kostka L, et al. Hydrolytically degradable polymer micelles for anticancer drug delivery to solid tumors. Macromol Chem Phys. 2012;213(8):858–867.
  • Anderson RJ, Compton BJ, Tang CW, et al. NKT cell-dependent glycolipid-peptide vaccines with potent anti-tumour activity. Chem Sci. 2015;6(9):5120–5127.
  • Ramu D, Garg S, Ayana R, et al. Novel beta-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem Pharmacol. 2017;129:26–42.
  • Song G, Yang S, Zhang W, et al. Discovery of the first series of small molecule H5N1 entry inhibitors. J Med Chem. 2009;52(23):7368–7371.
  • El-labbad EM, Ismail MA, Abou Ei Ella DA, et al. Discovery of novel peptidomimetics as irreversible CHIKV NsP2 protease inhibitors using quantum mechanical-based ligand descriptors. Chem Biol Drug Des. 2015;86(6):1518–1527.
  • Shang C, Cai C, Zhao C, et al. Synthesis and anti-inflammatory activity of gold-nanoparticle bearing a dermatan sulfate disaccharide analog. Chin Chem Lett. 2018;29(1):81–83.
  • Taher AT, Mostafa Sarg MT, El-Sayed Ali NR, et al. Design, synthesis, modeling studies and biological screening of novel pyrazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Chem. 2019;89:103023.
  • Ahmed EM, Hassan MSA, El-Malah AA, et al. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg Chem. 2020;95:103497.
  • Tao R, Gao M, Liu F, et al. Alleviating the liver toxicity of chemotherapy via pH-responsive hepatoprotective prodrug micelles. ACS Appl Mater Interfaces. 2018;10(26):21836–21846.
  • Shen W, Kim JS, Hilfinger J. Expedient total synthesis of triciribine and its prodrugs. Synth Commun. 2012;42(3):358–374.
  • Tsybulskaya I, Kulak T, Kalinichenko E, et al. Phospholipid derivatives of cladribine and fludarabine: synthesis and biological properties. Bioorg Med Chem. 2015;23(13):3287–3296.
  • Bouchmaa N, Tilaoui M, Boukharsa Y, et al. In vitro antitumor activity of newly synthesized pyridazin-3(2H)-one derivatives via apoptosis induction. Pharm Chem J. 2018;51(10):893–901.
  • Shen W, Kim JS, Mitchell S, et al. 5'-O-D-valyl ara A, a potential prodrug for improving oral bioavailability of the antiviral agent vidarabine. Nucleosides Nucleotides Nucleic Acids. 2009;28(1):43–55.
  • Shen W, Kim JS, Kish PE, et al. Design and synthesis of vidarabine prodrugs as antiviral agents. Bioorganic Med Chem Lett. 2009;19(3):792–796.
  • Steffensen MB, Simanek EE. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew Chem Int Ed. 2004;43(39):5178–5180.
  • Boukharsa Y, Meddah B, Tiendrebeogo RY, et al. Synthesis and antidepressant activity of 5-(benzo[b]furan-2-ylmethyl)-6-methylpyridazin-3(2H)-one derivatives. Med Chem Res. 2016;25(3):494–500.
  • Hassler M, Wu YQ, Mallikarjuna Reddy N, et al. RNA synthesis via dimer and trimer phosphoramidite block coupling. Tetrahedron Lett. 2011;52(20):2575–2578.
  • Lempens EH, Merkx M, Tirrell M, et al. Dendrimer display of tumor-homing peptides. Bioconjug Chem. 2011;22(3):397–405.
  • Sedlacek O, Hruby M, Studenovsky M, et al. Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation. Bioorg Med Chem. 2012;20(13):4056–4063.
  • Lomkova EA, Chytil P, Janouskova O, et al. Biodegradable micellar HPMA-based polymer-drug conjugates with betulinic acid for passive tumor targeting. Biomacromolecules. 2016;17(11):3493–3507.
  • Bouchmaa N, Ben Mrid R, Boukharsa Y, et al. Cytotoxicity of new pyridazin-3(2H)-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468). Arch Pharm (Weinheim). 2018;351(12):e1800128.
  • Musonda CC, Gut J, Rosenthal PJ, et al. Application of multicomponent reactions to antimalarial drug discovery. Part 2: New antiplasmodial and antitrypanosomal 4-aminoquinoline gamma- and delta-lactams via a ‘catch and release’ protocol. Bioorg Med Chem. 2006;14(16):5605–5615.
  • Caldarelli SA, Boisbrun M, Alarcon K, et al. Exploration of potential prodrug approach of the bis-thiazolium salts T3 and T4 for orally delivered antimalarials. Bioorgan Med Chem Lett. 2010;20(13):3953–3956.
  • Sharma V, Agarwal S, Madurkar SM, et al. Diversity-oriented synthesis and activity evaluation of substituted bicyclic lactams as anti-malarial against Plasmodium falciparum. Malar J. 2014;13:467.
  • Boonyarattanakalin S, Liu X, Michieletti M, et al. Chemical synthesis of all phosphatidylinositol mannoside (PIM) glycans from Mycobacterium tuberculosis. J Am Chem Soc. 2008;130(49):16791–16799.
  • Hadi T, Pfeffer JM, Clarke AJ, et al. Water-soluble substrates of the peptidoglycan-modifying enzyme O-acetylpeptidoglycan esterase (Ape1) from Neisseria gonorrheae. J Org Chem. 2011;76(4):1118–1125.
  • Low ML, Maigre L, Dorlet P, et al. Conjugation of a new series of dithiocarbazate Schiff base Copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconjug Chem. 2014;25(12):2269–2284.
  • Joe M, Lowary TL. Synthesis of a homologous series of galactofuranose-containing mycobacterial arabinogalactan fragments. Can J Chem. 2016;94(11):976–988.
  • Dogan IS, Sarac S, Sari S, et al. New azole derivatives showing antimicrobial effects and their mechanism of antifungal activity by molecular modeling studies. Eur J Med Chem. 2017;130:124–138.
  • Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol. 2010;6(6):442–448.
  • Elkady M, Niess R, Schaible AM, et al. Modified acidic nonsteroidal anti-inflammatory drugs as dual inhibitors of mPGES-1 and 5-LOX. J Med Chem. 2012;55(20):8958–8962.
  • Song Z, Xu Y, Yang W, et al. Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. Eur Polym J. 2015;69:559–572.
  • Cui N, Qian J, Xu W, et al. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels. Carbohydr Polym. 2016;136:1017–1026.
  • Taher AT, Kadry HH, Allara M, et al. Synthesis and binding study of certain 6-arylalkanamides as molecular probes for cannabinoid receptor subtypes. J Enzyme Inhib Med Chem. 2013;28(3):436–439.
  • Vallinayagam R, Schmitt F, Barge J, et al. Glycoside esters of 5-aminolevulinic acid for photodynamic therapy of cancer. Bioconjug Chem. 2008;19(4):821–839.
  • Ito H, Nishio Y, Hara T, et al. Oral administration of 5-aminolevulinic acid induces heme oxygenase-1 expression in peripheral blood mononuclear cells of healthy human subjects in combination with ferrous iron. Eur J Pharmacol. 2018;833:25–33.
  • Sugiyama Y, Hiraiwa Y, Hagiya Y, et al. 5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunol. 2018;19(1):41.
  • Wang Z, Ma K, Liu C, et al. 5-Aminolevulinic acid combined with sodium ferrous citrate (5-ALA/SFC) ameliorated liver injury in a murine acute graft-versus-host disease model by reducing inflammation responses through PGC1-alpha activation. Drug Discov Ther. 2021;14(6):304–312.
  • Sakurai Y, Ngwe Tun MM, Kurosaki Y, et al. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem Biophys Res Commun. 2021;545:203–207.
  • Liu L, Zha J, DiGiandomenico A, et al. Synthetic Enterobacterial Common Antigen (ECA) for the development of a universal immunotherapy for drug-resistant Enterobacteriaceae. Angew Chem Int Ed. 2015;54(37):10953–10957.
  • Fang G, Zeng F, Yu C, et al. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers. Colloids Surf B. 2014;122:472–481.
  • Liu T, Liao JX, Hu Y, et al. Synthetic access toward cycloastragenol glycosides. J Org Chem. 2017;82(8):4170–4178.
  • Lambruschini C, Basso A, Moni L, et al. Bicyclic heterocycles from levulinic acid through a fast and operationally simple diversity-oriented multicomponent approach. Eur J Org Chem. 2018;2018(39):5445–5455.
  • Muzzio M, Yu C, Lin H, et al. Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chem. 2019;21(8):1895–1899.
  • Chaudhari C, Shiraishi M, Nishida Y, et al. One-pot synthesis of pyrrolidones from levulinic acid and amines/nitroarenes/nitriles over the Ir-PVP catalyst. Green Chem. 2020;22(22):7760–7764.
  • Li Z, Li D, Wang L, et al. Photocontrollable water-soluble polymeric hydrogen sulfide (H2S) donor. Polymer. 2019;168:16–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.