709
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications

&
Pages 403-430 | Received 16 Dec 2019, Accepted 13 May 2021, Published online: 15 Jul 2021

References

  • Khattab AR, Farag MA. Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. Crit Rev Biotechnol. 2020;40:415–431.
  • Yuan ZL, Chen YC, Yang Y. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol. 2009;25:295–303.
  • Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67:491–502.
  • Pinto M, Sousa M, Nascimento M. Xanthone derivatives: new insights in biological activities. Curr Med Chem. 2005;12:2517–2538.
  • Panda SS, Chand M, Sakhuja R, et al. Xanthones as potential antioxidants. Curr Med Chem. 2013;20:4481–4507.
  • Verpoorte R, El-Barbary M, El-Ghorab D, et al. Naturally occurring xanthones; latest investigations: isolation, structure elucidation and chemosystematic significance. Curr Med Chem. 2009;16:2581–2626.
  • Farag MA, Weigend M, Luebert F, et al. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC-Q-TOF-MS metabolomic profiles. Phytochemistry. 2013;96:170–183.
  • Farag MA, Khattab AR, Maamoun AA, et al. UPLC-MS metabolome based classification of Lupinus and Lens seeds: a prospect for phyto-equivalency of its different accessions. Food Res Int. 2019;115:379–392.
  • Farag MA, Gad HA, Heiss AG, et al. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem. 2014;151:333–342.
  • Elhawary SS, Younis IY, El Bishbishy MH, et al. LC–MS/MS-based chemometric analysis of phytochemical diversity in 13 Ficus spp. (Moraceae): correlation to their in vitro antimicrobial and in silico quorum sensing inhibitory activities. Ind Crops Prod. 2018;126:261–271.
  • Le Pogam P, Boustie J. Xanthones of lichen source: a 2016 update. Molecules. 2016;21:1–30.
  • Masters K-S, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev. 2012;112:3717–3776.
  • Mishra VK, Passari AK, Singh BP. In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima wallichii. Current trends in plant disease diagnostics and management practices. Springer: Cham; 2016. p. 367–381.
  • Prinsep MR, Copp BR, Keyzers RA, et al. Marine natural products. Nat Prod Rep. 2017;34:235–294.
  • Borges Wde, Borges K, Bonato P, et al. Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem. 2009;13:1137–1163.
  • Pockrandt D, Ludwig L, Fan A, et al. New insights into the biosynthesis of prenylated xanthones: xptb from Aspergillus nidulans catalyses an O-prenylation of xanthones. ChemBioChem. 2012;13:2764–2771.
  • Sanchez JF, Entwistle R, Hung JH, et al. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc. 2011;133:4010–4017.
  • Chexal KK, Fouweather C, Holker JSE, et al. The biosynthesis of fungal metabolites. Part III. Structure of shamixanthone and tajixanthone, metabolites of Aspergillus variecolor. J Chem Soc Perkin Trans. 1. 1974;1:1584–1593.
  • Ishida M, Hamasaki T, Hatsuda Y, et al. Epishamixanthone, a new metabolite from Aspergillus rugulosus. Agric Biol Chem. 1976;40:1051–1052.
  • Santos Á, Soares JX, Cravo S, et al. Lipophilicity assessement in drug discovery: experimental and theoretical methods applied to xanthone derivatives. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1072:182–192.
  • Szwalbe AJ, Williams K, Song Z, et al. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chem Sci. 2019;10:233–238.
  • Meléndez-González C, Murià-González MJ, Anaya AL, et al. Acremoxanthone E, a novel member of heterodimeric polyketides with a bicyclo[3.2.2]nonene ring, produced by Acremonium camptosporum W. Gams (Clavicipitaceae) endophytic fungus. Chem Biodivers. 2015;12:133–147.
  • Wezeman T, Bräse S, Masters KS. Xanthone dimers: a compound family which is both common and privileged. Nat Prod Rep. 2015;32:6–28.
  • Wang P, Luo YF, Zhang M, et al. Three xanthone dimers from the Thai mangrove endophytic fungus Phomopsis sp. xy21. J Asian Nat Prod Res. 2018;20:217–226.
  • Wu S, Huang T, Xie D, et al. Xantholipin B produced by the stnR inactivation mutant Streptomyces flocculus CGMCC 4.1223 WJN-1. J Antibiot. 2017;70:90–95.
  • Fatima N, Muhammad SA, Khan I, et al. Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol Plant. 2016;38:1–18.
  • Molina G, Pastore GM, Dionísio AP, et al. The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. 2010;2011:1–11.
  • Azevedo JL, Maccheroni W, Pereira JO, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol. 2000;3:40–65.
  • Gunatilaka AAL. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod. 2006;69:509–526.
  • Arthan S, Tantapakul C, Kanokmedhakul K, et al. A new xanthone from the fungus Apiospora montagnei. Nat Prod Res. 2017;31:1766–1771.
  • Kamel RA, Abdel-Razek AS, Hamed A, et al. Isoshamixanthone: a new pyrano xanthone from endophytic Aspergillus sp. ASCLA and absolute configuration of epiisoshamixanthone. Nat Prod Res. 2019;34:1080–1090.
  • Chexal KK, Holker JSE, Simpson TJ. The biosynthesis of fungal metabolites. Part VI. Structures and biosynthesis of some minor metabolites from variant strains of Aspergillus variecolor. J Chem Soc Perkin Trans 1. 2004;1:549–554.
  • Ma TT, Shan WG, Ying YM, et al. Xanthones with α-glucosidase inhibitory activities from Aspergillus versicolor, a fungal endophyte of Huperzia serrata. Helv Chim Acta. 2015;98:148–152.
  • Bidartondo MI, Duckett JG. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proc R Soc B Biol Sci. 2010;277:485–492.
  • Song XQ, Zhang X, Han QJ, et al. Xanthone derivatives from Aspergillus sydowii, an endophytic fungus from the liverwort Scapania ciliata S. Lac and their immunosuppressive activities. Phytochem Lett. 2013;6:318–321.
  • Lösgen S, Magull J, Schulz B, et al. Isofusidienols: novel chromone-3-oxepines produced by the endophytic fungus Chalara sp. European J Org Chem. 2008;2008:698–703.
  • Pornpakakul S, Liangsakul J, Ngamrojanavanich N, et al. Cytotoxic activity of four xanthones from Emericella variecolor, an endophytic fungus isolated from Croton oblongifolius. Arch Pharm Res. 2006;29:140–144.
  • Krohn K, Kouam SF, Kuigoua GM, et al. Xanthones and Oxepino[2,3-b]chromones from three endophytic fungi. Chem Eur J. 2009;15:12121–12132.
  • Shao C, Wang C, Wei M, et al. Structure elucidation of two new xanthone derivatives from the marine fungus Penicillium sp. (ZZF 32#) from the South China Sea. Magn Reson Chem. 2008;46:1066–1069.
  • Saha P, Talukdar A Das, Choudhury MD, et al. Bioprospecting for fungal-endophyte-derived natural products for drug discovery. Advances in endophytic fungal research. Cham: Springer; 2019. p. 35–49.
  • Klaiklay S, Rukachaisirikul V, Tadpetch K, et al. Chlorinated chromone and diphenyl ether derivatives from the mangrove-derived fungus Pestalotiopsis sp. PSU-MA69. Tetrahedron. 2012;68:2299–2305.
  • Pan JH, Deng JJ, Chen YG, et al. New lactone and xanthone derivatives produced by a mangrove endophytic fungus Phoma sp. SK3RW1M from the South China Sea. Helv Chim Acta. 2010;93:1369–1374.
  • Isaka M, Jaturapat A, Rukseree K, et al. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod. 2001;64:1015–1018.
  • Rukachaisirikul V, Sommart U, Phongpaichit S, et al. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry. 2008;69:783–787.
  • Wagenaar MM, Clardy J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod. 2001;64:1006–1009.
  • Yang HY, Gao YH, Niu DY, et al. Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia. 2013;91:189–193.
  • Hu Q, Yang Y, Yang S, et al. Xanthones from the fermentation products of the endophytic fungus of Phomopsis amygdali. Chem Nat Compd. 2015;51:456–459.
  • Yuan L, Huang W, Du G, et al. Isolation of xanthones from the fermentation products of the endophytic fungus of Phomopsis amygdali. Chem Nat Compd. 2015;51:460–463.
  • Matasyoh JC, Dittrich B, Schueffler A, et al. Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae. Parasitol Res. 2011;108:561–566.
  • Da Silva PHF, De Souza MP, Bianco EA, et al. Antifungal polyketides and other compounds from Amazonian endophytic talaromyces fungi. J Braz Chem Soc. 2018;29:622–630.
  • Koolen HHF, Menezes LS, Souza MP, et al. Talaroxanthone, a novel xanthone dimer from the endophytic fungus Talaromyces sp. associated with Duguetia stelechantha (diels) R. E. Fries. J Braz Chem Soc. 2013;24:880–883.
  • Healy PC, Hocking A, Tran-Dinh N, et al. Xanthones from a microfungus of the genus Xylaria. Phytochemistry. 2004;65:2373–2378.
  • Davis RA, Pierens GK. 1H and 13C NMR assignments for two new xanthones from the endophytic fungus Xylaria sp. FRR 5657. Magn Reson Chem. 2006;44:966–968.
  • Liao ZJ, Tian WJ, Liu XX, et al. A new xanthone from an endophytic fungus of Anoectochilus roxburghii. Chem Nat Compd. 2018;54:267–269.
  • Phongpaichit S, Nikom J, Rungjindamai N, et al. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol Med Microbiol. 2007;51:517–525.
  • Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev. 2003;64:573–606.
  • Sarasan M, Puthumana J, Job N, et al. Marine algicolous endophytic fungi-a promising drug resource of the era. J Microbiol Biotechnol. 2017;27:1039–1052.
  • Zhang P, Li X, Wang BG. Secondary metabolites from the marine algal-derived endophytic fungi: chemical diversity and biological activity. Planta Med. 2016;13:832–842.
  • Wang J, Ding W, Wang R, et al. Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar Drugs. 2015;13:4492–4504.
  • Ebrahim W, El-Neketi M, Lewald LI, et al. Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal-bacterial mixed cultures. J Nat Prod. 2016;79:914–922.
  • Shang Z, Li XM, Li CS, et al. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodivers. 2012;9:1338–1348.
  • Guo Z, She Z, Shao C, et al. 1H and13C NMR signal assignments of Paecilin A and B, two new chromone derivatives from mangrove endophytic fungus Paecilomyces sp. (tree 1–7). Magn Reson Chem. 2007;45:777–780.
  • Andersen R, Büchi G, Kobbe B, et al. Secalonic acids D and F are toxic metabolites of Aspergillus aculeatus. J Org Chem. 1977;42:352–353.
  • Steyn PS. The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron. 1970;26:51–57.
  • Wen L, Lin YC, She ZG, et al. Paeciloxanthone, a new cytotoxic xanthone from the marine mangrove fungus Paecilomyces sp. (Tree1–7). J Asian Nat Prod Res. 2008;10:133–137.
  • Liu H, Chen S, Liu W, et al. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar Drugs. 2016;14:1–7.
  • He KY, Zhang C, Duan YR, et al. New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J Antibiot. 2017;70:823–827.
  • Yang J, Xu F, Huang C, et al. Metabolites from the mangrove endophytic fungus Phomopsis sp. (#zsu-H76). European J Org Chem. 2010;2010:3692–3695.
  • Huang Z, Yang J, Lei F, et al. A new xanthone O-glycoside from the mangrove endophytic fungus Phomopsis sp. Chem Nat Compd. 2013;49:27–30.
  • Yang JX, Qiu S, She Z, et al. A new xanthone derivative from the marine fungus Phomopsis sp. (No. SK7RN3G1). Chem Nat Compd. 2013;49:246–248.
  • Huang Z, Yang R, Yin X, et al. Structure elucidation and NMR assignments for two xanthone derivatives from a mangrove endophytic fungus (No. ZH19). Magn Reson Chem. 2010;48:80–82.
  • Hu HB, Luo YF, Wang P, et al. Xanthone-derived polyketides from the Thai mangrove endophytic fungus Phomopsis sp. xy21. Fitoterapia. 2018;131:265–271.
  • Liu F, Cai XL, Yang H, et al. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010;76:185–189.
  • Zhu F, Lin Y. Three xanthones from a marine-derived mangrove endophytic fungus. Chem Nat Compd. 2007;43:132–135.
  • Davis ND. Sterigmatocystin and other mycotoxins produced by Aspergillus species. J Food Prot. 2016;44:711–714.
  • Yoiprommarat S, Kongthong S, Choowong W, et al. Xanthones from a lignicolous freshwater fungus (BCC 28210). Nat Prod Res. 2019;34:1233–1237.
  • Huang Z, Yang R, Guo Z, et al. A new xanthone derivative from mangrove endophytic fungus No. ZSU-H16. Chem Nat Compd. 2010;46:348–351.
  • Shao C, She Z, Guo Z, et al. 1H and13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36). Magn Reson Chem. 2007;45:434–438.
  • Saleem M, Ali MS, Hussain S, et al. Marine natural products of fungal origin. Nat Prod Rep. 2007;24:1142.
  • Kara S, Schrittwieser JH, Hollmann F, et al. Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol. 2014;98:1517–1529.
  • Gul T, Krzek M, Permentier HP, et al. Microbial flavoprotein monooxygenases as mimics of mammalian flavin-containing monooxygenases for the enantioselective preparation of drug metabolites. Drug Metab Dispos. 2016;44:1270–1276.
  • Sariaslani FS. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178.
  • Khattab AR, Ibrahim AR, Ibrahim SM, et al. LC–MS/MS based-comparative study of (S)-nicotine metabolism by microorganisms, mushroom and plant cultures: parallels to its mammalian metabolic fate. Bull Fac Pharmacy Cairo Univ. 2015;53:93–99.
  • Smith RV, Acosta D, Rosazza JP. Cellular and microbial models in the investigation of mammalian metabolism of xenobiotics. Adv Biochem Eng. 2005;5:69–100.
  • Jung HA, Su BN, Keller WJ, et al. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem. 2006;54:2077–2082.
  • Yoo JH, Kang K, Jho EH, et al. α- and γ-Mangostin inhibit the proliferation of colon cancer cells via β-catenin gene regulation in Wnt/cGMP signalling. Food Chem. 2011;129:1559–1566.
  • Deschamps JD, Gautschi JT, Whitman S, et al. Discovery of platelet-type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries. Bioorganic Med Chem. 2007;15:6900–6908.
  • Dharmaratne HRW, Sakagami Y, Piyasena KGP, et al. Antibacterial activity of xanthones from Garcinia mangostana (L.) and their structure-activity relationship studies. Nat Prod Res. 2013;27:938–941.
  • Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, et al. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol. 2008;46:3227–3239.
  • Shan T, Ma Q, Guo K, et al. Xanthones from Mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med. 2011;11:666–677.
  • Arunrattiyakorn P, Suwannasai N, Aree T, et al. Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12. J Mol Catal B Enzym. 2014;102:174–179.
  • Koh JJ, Zou H, Mukherjee D, et al. Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur J Med Chem. 2016;123:684–703.
  • Arunrattiyakorn P, Kuno M, Aree T, et al. Biotransformation of β-mangostin by an endophytic fungus of Garcinia mangostana to furnish xanthenes with an unprecedented heterocyclic skeleton. J. Nat Prod. 2018;81:2244–2250.
  • Hung DT, Jamison TF, Schreiber SL. Understanding and controlling the cell cycle with natural products. Chem Biol. 1996;3:623–639.
  • Wang L, Dash S, Ng CY, et al. A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol. 2017;2:243–252.
  • Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–D484.
  • Chang A, Scheer M, Grote A, et al. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res. 2009;37:D588–D592.
  • Krieger CJ. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2004;32:438D–442.
  • Hatzimanikatis V, Li C, Ionita JA, et al. Exploring the diversity of complex metabolic networks. Bioinformatics. 2005;21:1603–1609.
  • González-Lergier J, Broadbelt LJ, Hatzimanikatis V. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc. 2005;127:9930–9938.
  • Cottret L, Frainay C, Chazalviel M, et al. MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 2018;46:W495–W502.
  • Goesmann A, Haubrock M, Meyer F, et al. PathFinder: reconstruction and dynamic visualization of metabolic pathways. Bioinformatics. 2002;18:124–129.
  • McShan DC, Rao S, Shah I. PathMiner: predicting metabolic pathways by heuristic search. Bioinformatics. 2003;19:1692–1698.
  • Kanehisa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2005;34:D354–D357.
  • Mendes LF, Bastos EL, Desjardin DE, et al. Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens. FEMS Microbiol. Lett. 2008;282:132–139.
  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, et al. Fungal endophytes: an untapped source of biocatalysts. Fungal Divers. 2012;54:19–30.
  • Lim JS, Park MC, Lee JH, et al. Optimization of culture medium and conditions for neo- fructooligosaccharides production by Penicillium citrinum. Eur Food Res Technol. 2005;221:639–644.
  • Pimenta EF, Vita-Marques AM, Tininis A, et al. Use of experimental design for the optimization of the production of new secondary metabolites by two penicillium species. J Nat Prod. 2010;73:1821–1832.
  • Farag MA, Deavours BE, de Fatima A, et al. Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in medicago truncatula cell cultures. Plant Physiol. 2009;151:1096–1113.
  • Farag MA, Huhman DV, Dixon RA, et al. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 2008;146:387–402.
  • Bertrand S, Bohni N, Schnee S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 2014;32:1180–1204.
  • Li C, Zhang J, Shao C, et al. A new xanthone derivative from the co-culture broth of two marine fungi (strain no. E33 and K38). Chem Nat Compd. 2011;47:382–384.
  • Mendes-Soares H, Mundy M, Soares LM, et al. MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics. 2016;17:1–10.
  • Levy R, Carr R, Kreimer A, et al. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation. BMC Bioinformatics. 2015;16:164.
  • Perez-Garcia O, Lear G, Singhal N. Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front Microbiol. 2016;7:673.
  • Pandey A. Pharmacological potential of marine microbes. Pharmaceuticals from Microbes. Cham: Springer; 2019. p. 1–25.
  • Farag MA, Porzel A, Al-Hammady MA, et al. Soft corals biodiversity in the Egyptian red sea: a comparative MS and NMR metabolomics approach of wild and aquarium grown species. J Proteome Res. 2016;15:1274–1287.
  • Farag MA, Westphal H, Eissa TF, et al. Effect of oxylipins, terpenoid precursors and wounding on soft corals’ secondary metabolism as analyzed via UPLC/MS and chemometrics. Molecules. 2017;22:2195.
  • Luna GM. Biotechnological potential of marine microbes. Heidelberg, Berlin: Springer Handb. Mar. Biotechnol. Springer; 2015. p. 651–661.
  • Dorigo U, Volatier L, Humbert JF. Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Res. 2005;39:2207–2218.
  • Fadiji AE, Babalola OO. Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Methods. 2020;170:105860.
  • Ghosh A, Mehta A, Khan AM. Metagenomic analysis and its applications. Encycl Bioinforma Comput Biol ABC Bioinforma. 2018;3:184–193.
  • Enagbonma BJ, Aremu BR, Babalola OO. Profiling the functional diversity of termite mound soil bacteria as revealed by shotgun sequencing. Genes. 2019;10:637.
  • Glass EM, Meyer F. MG-RAST, a metagenomics service for the analysis of microbial community structure and function. Hydrocarbon and lipid microbiology protocols., Heidelberg, Berlin: Springer; 2015. p. 69–87.
  • López-García A, Pineda-Quiroga C, Atxaerandio R, et al. Comparison of mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Front Microbiol. 2018;9:3010.
  • Kuczynski J, Stombaugh J, Walters WA, et al. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Curr Protoc Microbiol. 2012;27:1E–5E.
  • Nilsson RH, Abarenkov K, Larsson K-H, et al. Molecular identification of fungi: rationale, philosophical concerns, and the UNITE database. Open Appl Informatics J. 2016;5:81–86.
  • Fernández-Arrojo L, Guazzaroni ME, López-Cortés N, et al. Metagenomic era for biocatalyst identification. Curr Opin Biotechnol. 2010;21:725–733.
  • Devarapalli P, Kumavath RN. Metagenomics—a technological drift in bioremediation. Adv. Bioremediation Wastewater Polluted Soil. UK: IntechOpen; 2015.
  • Fang Z, Fang W, Liu J, et al. Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol. 2010;20:1351–1358.
  • Chen AJ, Frisvad JC, Sun BD, et al. Aspergillus section Nidulantes (formerly Emericella): polyphasic taxonomy, chemistry and biology. Stud Mycol. 2016;84:1–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.