1,297
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 342-360 | Received 28 Apr 2020, Accepted 07 May 2021, Published online: 19 Aug 2021

References

  • Dusselier M, Van Wouwe P, Dewaele A, et al. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci. 2013;6(5):1415–1442.
  • Takkellapati S, Li T, Gonzalez M. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy. 2018;20(7):1615–1630.
  • Bozell J, Petersen G. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12(4):539–555.
  • LBNet & BBSRC-NIBB. The ten green chemicals which can create growth, jobs and trade for the UK. York: Lignocellulosic Biorefinery Network (LBNet) and Biotechnology and Biological Sciences Research Council Network in Industrial Biotechnology and Bioenergy (BBSRC-NIBB); 2018.
  • Research Grand View. Lactic acid market size, share and trend analysis report by raw material (corn, sugarcane), by application (industrial, food and beverages, polylactic acid), by region, and segment forecasts, 2019–2025. San Francisco: Grand View Research; 2019.
  • Scheele CW. Opuscula chemica et physica. Leipzig: Lipsiae: In officina libr. Io. Godofr. Mülleriana; 1788.
  • Wee Y-J, Kim J-N, Ryu H-W. Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol. 2006;44(2):163–172.
  • Lucintel. Polylactic acid market report: trends, forecast and competitive analysis. Dallas: Lucintel; 2020.
  • Lunt J. Large-scale production, properties and commercial applications of poly lactic acid polymers. Polym Degrad Stab. 1998;59(1–3):145–152.
  • Klotz S, Kaufmann N, Kuenz A, et al. Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol. 2016;100(22):9423–9437.
  • Gao C, Ma C, Xu P. Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv. 2011;29(6):930–939.
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31(6):877–902.
  • Gasca-González R, Prado-Rubio OA, Gómez-Castro FI, et al. Techno-economic analysis of alternative reactive purification technologies in the lactic acid production process. In: Kiss A.A., Zondervan E, Lakerveld R, Özkan L, editors. Computer aided chemical engineering. s.l.:Elsevier B.V.; 2019. p. 457–462.
  • Bai D-M, Wei Q, Yan Z-H, et al. Fed-batch fermentation of Lactobacillus lactis for hyper-production of l-lactic acid. Biotechnol Lett. 2003;25(21):1833–1835.
  • Tanaka K, Komiyama A, Sonomoto K, et al. Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol. 2002;60(1–2):160–167.
  • Moon S-K, Wee Y-J, Choi G-W. A novel lactic acid bacterium for the production of high purity l-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J Biosci Bioeng. 2012;114(2):155–159.
  • Abdel-Rahman MA, Hassan SE-D, Azab MS, et al. High improvement in lactic acid productivity by new alkaliphilic bacterium using repeated batch fermentation integrated with increased substrate concentration. BioMed Res Int. 2019;2019:1–13.
  • Abdel-Rahman MA, Tashiro Y, Zendo T, et al. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS Microbiol Lett. 2015;362(2):1–7.
  • Murakami N, Oba M, Iwamoto M, et al. l-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss. J Biosci Bioeng. 2016;121(1):89–95.
  • Coelho LF, Beitel SM, Sass DC, et al. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech. 2018;8(4):213.
  • Zhang F, Liu J, Han X, et al. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng Life Sci. 2020;20(12):562–570.
  • Fu Y-Q, Yin L-F, Zhu H-Y, et al. High-efficiency l-lactic acid production by Rhizopus oryzae using a novel modified one-step fermentation strategy. Bioresour Technol. 2016;218:410–417.
  • Tay A, Yang S-T. Production of l(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng. 2002;80(1):1–12.
  • Pimtong V, Ounaeb S, Thitiprasert S, et al. Enhanced effectiveness of Rhizopus oryzae by immobilization in a static bed fermentor for l-lactic acid production. Process Biochem. 2017;52:44–52.
  • Gullon B, Yanez R, Alonso JL, et al. l-Lactic acid production from apple pomace by sequential. Bioresour Technol. 2008;99(2):308–319.
  • Nguyen CM, Kim J-S, Hwang HJ, et al. Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, Makgeolli. Bioresour Technol. 2012a;110:552–559.
  • Pejin J, Radosavljević M, Pribić M, et al. Possibility of l-(+)-lactic acid fermentation using malting, brewing, and oil production by-products. Waste Manage (Oxford). 2018;79:153–163.
  • Unban K, Khanongnuch R, Kanpiengjai A, et al. Utilizing gelatinized starchy waste from rice noodle factory as substrate for l(+)-lactic acid production by amylolytic lactic acid bacterium Enterococcus faecium K-1. Appl Biochem Biotechnol. 2020;192(2):353–366.
  • Yuan S-F, Hsu T-C, Wang C-A, et al. Production of optically pure l(+)-lactic acid from waste plywood chips using an isolated thermotolerant Enterococcus faecalis SI at a pilot scale. J Ind Microbiol Biotechnol. 2018;45(11):961–970.
  • Cubas-Cano E, Venus J, González-Fernández C, et al. Assessment of different Bacillus coagulans strains for l-lactic acid production from defined media and gardening hydrolysates: effect of lignocellulosic inhibitors. J Biotechnol. 2020b;323:9–16.
  • Pleissner D, Neu A-K, Mehlmann K, et al. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour Technol. 2016;218:167–173.
  • Alexandri M, Blanco-Catalá J, Schneider R, et al. High l(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresour Technol. 2020;316:123949.
  • Jiang S, Xu P, Tao F. l-Lactic acid production by Bacillus coagulans through simultaneous saccharification and fermentation of lignocellulosic corncob residue. Bioresour Technol Rep. 2019;6:131–137.
  • Ahorsu R, Cintorrino G, Medina F, et al. Microwave processes: a viable technology for obtaining xylose from walnut shell to produce lactic acid by Bacillus coagulans. J Clean Prod. 2019;231:1171–1181.
  • Smerilli M, Neureiter M, Wurz S, et al. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol. 2015;90(4):648–657.
  • Zhang L, Li X, Yong Q, et al. Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J. 2015;94:92–99.
  • Zheng Y, Wang Y, Zhang J, et al. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae. Bioresour Technol. 2016;218:344–350.
  • Angermayr S, van der Woude AD, Correddu D, et al. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol Biofuels. 2014;7(1):99.
  • Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci. 2015;2:106–117.
  • Garg S, Clomburg JM, Gonzalez R. A modular approach for high-fux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1. J Ind Microbiol Biotechnol. 2018;45(6):379–391.
  • Buron-Moles G, Chailyan A, Dolejs I, et al. Uncovering carbohydrate metabolism through a genotype–phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol. 2019;103(7):3135–3152.
  • Tashiro Y, Kaneko W, Sun Y, et al. Continuous d-lactic acid production by a novel thermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Appl Microbiol Biotechnol. 2011;89(6):1741–1750.
  • Abdel‐Rahman MA, Tan J, Tashiro Y, et al. Non‐carbon loss long‐term continuous lactic acid production from mixed sugars using thermophilic Enterococcus faecium QU 50. Biotechnol Bioeng. 2020;117(6):1673–1683.
  • Sun Y, Yang Y, Liu H, et al. Simultaneous liquefaction, saccharification, and fermentation of l-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. Bioprocess Biosyst Eng. 2020;43(9):1717–1724.
  • Doi Y. Lactic acid fermentation is the main aerobic metabolic pathway in Enterococcus faecalis metabolizing a high concentration of glycerol. Appl Microbiol Biotechnol. 2018;102(23):10183–10192.
  • Doi Y. Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol. 2019;103(13):5079–5093.
  • Bizzini A, Zhao C, Budin-Verneuil A, et al. Glycerol is metabolized in a complex and strain-dependent manner in Enterococcus faecalis. J Bacteriol. 2010;192(3):779–785.
  • Murarka A, Dharmadi Y, Yazdani SS, et al. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol. 2008;74(4):1124–1135.
  • Jia B, Pu ZJ, Tang K, et al. Catalytic, computational, and evolutionary analysis of the d-lactate dehydrogenases responsible for d-lactic acid production in lactic acid bacteria. J Agric Food Chem. 2018;66(31):8371–8381.
  • Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev. 1980;44(1):106–139.
  • Garrigues C, Mercade M, Cocaign-Bousquet M, et al. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol Bioeng. 2001;74(2):108–115.
  • Gao C, Wang Y, Zhang Y, et al. NAD-independent l-lactate dehydrogenase required for l-lactate utilization in Pseudomonas stutzeri A1501. J Bacteriol. 2015;197(13):2239–2247.
  • Jiang T, Gao C, Ma C, et al. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol. 2014;22(10):589–599.
  • Prasirtsak B, Thitiprasert S, Tolieng V, et al. d-Lactic acid fermentation performance and the enzyme activity of a novel bacterium Terrilactibacillus laevilacticus SK5-6. Ann Microbiol. 2019;69(13):1537–1546.
  • Poudel P, Tashiro Y, Sakai K. New application of Bacillus strains for optically pure l-lactic acid production: general overview and future prospects. Biosci Biotechnol Biochem. 2016;80(4):642–654.
  • Alexandri M, Neu A‐K, Schneider R, et al. Evaluation of various Bacillus coagulans isolates for the production of high purity l-lactic acid using defatted rice bran hydrolysates. Int J Food Sci Technol. 2019;54(4):1321–1329.
  • Yao K, Zhou Q-x, Liu D-m, et al. Comparative proteomics of the metabolic pathways involved in l-lactic acid production in Bacillus coagulans BCS13002 using different carbon sources. LWT Food Sci Technol. 2019;116:108445.
  • Zhao B, Wang L, Ma C, et al. Repeated open fermentative production of optically pure l-lactic acid using. Bioresour Technol. 2010;101(16):6494–6498.
  • Huang LP, Jin B, Lant P, et al. Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J. 2005;23(3):265–276.
  • Saito K, Hasa Y, Abe H. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng. 2012;114(2):166–169.
  • Trakarnpaiboon S, Srisuk N, Piyachomkwan K, et al. l-Lactic acid production from liquefied cassava starch by thermotolerant Rhizopus microsporus: characterization and optimization. Process Biochem. 2017;63:26–34.
  • Ge X-Y, Qian H, Zhang W-G. Improvement of l-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour Technol. 2009;100(5):1872–1874.
  • Wendisch VF, Brito LF, Gil Lopez M, et al. The flexible feedstock concept in industrial biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol. 2016;234:139–157.
  • Shinkawa S, Okano K, Yoshida S, et al. Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Appl Microbiol Biotechnol. 2011;91(6):1537–1544.
  • Yoshida S, Okano K, Tanaka T, et al. Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol. 2011;92(1):67–76.
  • Okano K, Kimura S, Narita J, et al. Improvement in lactic acid production from starch using α-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Appl Microbiol Biotechnol. 2007;75(5):1007–1013.
  • Okano K, Zhang Q, Shinkawa S, et al. Efficient production of optically pure d-lactic acid from raw corn starch by using a genetically modified l-lactate dehydrogenase gene deficient and amylase secreting Lactobacillus plantarum strain. Appl Environ Microbiol. 2009;75(2):462–467.
  • Becker J, Rohles C, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–141.
  • Liu H, Kang J, Qi Q, et al. Production of lactate in Escherichia coli by redox regulation genetically and physiologically. Appl Biochem Biotechnol. 2011;164(2):162–169.
  • Mazumdar S, Blankschien MD, Clomburg JM, et al. Efficient synthesis of l-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Fact. 2013;12(1):7.
  • Parra-Ramírez D, Martinez A, Cardona CA. Lactic acid production from glucose and xylose using the lactogenic Escherichia coli strain JU15: experiments and techno-economic results. Bioresour Technol. 2019;273:86–92.
  • Liu Y, Gao W, Zhao X, et al. Pilot scale demonstration of d-lactic acid fermentation facilitated by Ca(OH)2 using a metabolically engineered Escherichia coli. Bioresour Technol. 2014;169:559–565.
  • Wang Y, Tian T, Zhao J, et al. Homofermentative production of d-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol Lett. 2012;34(11):2069–2075.
  • Zhang C, Zhou C, Assavasirijinda N, et al. Non-sterilized fermentation of high optically pure d-lactic acid by a genetically modified thermophilic. Microb Cell Fact. 2017;16(1):213.
  • Henard CA, Smith H, Dowe N, et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep. 2016;6(1):21585.
  • Lee JK, Kim S, Kim W, et al. Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution. Biotechnol Biofuels. 2019;12(1):234.
  • Fei Q, Liang B, Tao L, et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment. Biochem Eng J. 2020;158:107500.
  • Joseph A, Aikawa S, Sasaki K, et al. Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Biosci Biotechnol Biochem. 2013;77(5):966–970.
  • Li C, Tao F, Ni J, et al. Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Sci Rep. 2015;5(1):9777.
  • Hidese R, Matsuda M, Osanai T, et al. Malic enzyme facilitates d-lactate production through increased pyruvate supply during anoxic dark fermentation in Synechocystis sp. PCC 6803. ACS Synth Biol. 2020;9(2):260–268.
  • Baek S-H, Kwon EY, Kim YH, et al. Metabolic engineering and adaptive evolution for efficient production of d-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2016;100(6):2737–2748.
  • Bianchi MM, Brambilla L, Protani F, et al. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol. 2001;67(12):5621–5625.
  • Kong X, Zhang B, Hua Y, et al. Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. Bioresour Technol. 2019;273:220–230.
  • Branduardi P, Valli M, Brambilla L, et al. The yeast Zygosaccharomyces bailii: a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 2004;4(4–5):493–504.
  • Ilmen M, Koivuranta K, Ruohonen L, et al. Efficient production of l-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol. 2007;73(1):117–123.
  • Ikushima S, Fujii T, Kobayashi O, et al. Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid. Biosci Biotechnol Biochem. 2009;73(8):1818–1824.
  • Koivuranta KT, Ilmén M, Wiebe MG, et al. l-Lactic acid production from d-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene. Microb Cell Fact. 2014;13(1):107.
  • Yamada R, Ogura K, Kimoto Y, et al. Toward the construction of a technology platform for chemicals production from methanol: d-lactic acid production from methanol by an engineered yeast Pichia pastoris. World J Microbiol Biotechnol. 2019;35(2):37.
  • Pfeifenschneider J, Brautaset T, Wendisch V. Methanol as carbon substrate in the bio-economy: metabolic engineering of aerobic methylotrophic bacteria for production of value-added chemicals. Biofuels Bioprod Bioref. 2017;11(4):719–731.
  • Chen P-T, Hong Z-S, Cheng C-L, et al. Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresour Technol. 2020;308:123266.
  • Chen X, Wang X, Xue Y, et al. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. J Biosci Bioeng. 2018;125(6):703–709.
  • de la Torre I, Acedos M, Ladero M, et al. On the use of resting L. delbrueckii spp. delbrueckii cells for d-lactic acid production from orange peel wastes hydrolysates. Biochem Eng J. 2019;145:162–169.
  • Jönsson L, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Chen H, Huo W, Wang B, et al. l-Lactic acid production by simultaneous saccharification and fermentation of dilute ethylediamine pre-treated rice straw. Ind Crops Prod. 2019;141:111749.
  • Karnaouri A, Asimakopoulou G, Kalogiannis KG, et al. Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass Bioenergy. 2020;140:105672.
  • Cubas-Cano E, López-Gómez JP, González-Fernández C, et al. Towards sequential bioethanol and l-lactic acid co-generation: improving xylose conversion to l-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans. Renew Energy. 2020a;153:759–765.
  • Wang F-L, Li S, Sun Y-X, et al. Ionic liquids as efficient pretreatment solvents for lignocellulosic biomass. RSC Adv. 2017;7(76):47990–47998.
  • Yadav N, Pranaw K, Khare SK. Screening of lactic acid bacteria stable in ionic liquids and lignocellulosic by-products for bio-based lactic acid production. Bioresour Technol Rep. 2020;11:100423.
  • Nguyen CM, Kim J-S, Song JK, et al. d-Lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett. 2012b;34(12):2235–2240.
  • Chen C-Y, Zhao X-Q, Yen H-W, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10.
  • Angermayr SA, van der Woude AD, Correddu D, et al. Chirality matters: synthesis and consumption of the d-enantiomer of lactic acid by Synechocystis sp. strain PCC6803. Appl Environ Microbiol. 2016;82(4):1295–1304.
  • Henard CA, Franklin TG, Youhenna B, et al. Biogas biocatalysis: methanotrophic bacterial cultivation, metabolite profiling, and bioconversion to lactic acid. Front Microbiol. 2018;9:2610.
  • Kalyuzhnaya MG, Yang S, Rozova ON, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013;4(1):2785.
  • Müller V. New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage. Trends Biotechnol. 2019;37(12):1344–1354.
  • Pieja A, Morse M, Cal A. Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol. 2017;41:123–131.
  • Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod. 2018;181:72–87.
  • Peinemann J, Demichelis F, Fiore S, et al. Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. Bioresour Technol. 2019;289:121631.
  • Bai Z, Gao Z, Sun J, et al. d-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol. 2016;207:346–352.
  • Wang B, Zhang X, Yu X, et al. Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production. Appl Microbiol Biotechnol. 2019;103(5):2155–2170.
  • de la Torre I, Ladero M, Santos VE. Production of d-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Appl Microbiol Biotechnol. 2018;102(24):10511–10521.
  • de Lima BCJ, Coelho LF, Blanco KC, et al. Response surface optimization of d(–)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. Afr J Biotechnol. 2009;8(21):5842–5846.
  • Yu L, Lei T, Ren X, et al. Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochem Eng J. 2008;39(3):496–502.
  • Brock S, Kuenz A, Prüße U. Impact of hydrolysis methods on the utilization of agricultural residues as nutrient source for d-lactic acid production by Sporolactobacillus inulinus. Fermentation. 2019;5(1):12.
  • Li Y, Wang L, Ju J, et al. Efficient production of polymer-grade d-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresour Technol. 2013;142:186–191.
  • Wang L, Zhao B, Li F, et al. Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol. 2011;89(4):1009–1017.
  • Mladenović D, Pejin J, Kocić-Tanackov S, et al. Lactic acid production on molasses enriched potato stillage by Lactobacillus paracasei immobilized onto agro-industrial waste supports. Ind Crops Prod. 2018;124:142–148.
  • Thakur A, Panesar PS, Saini MS. l(+)-Lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste Biomass Valor. 2019;10(5):1119–1129.
  • Radosavljević M, Lević S, Belović M, et al. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid. Bioprocess Biosyst Eng. 2020;43(2):315–322.
  • Shi Z, Wei P, Zhu X, et al. Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Enzyme Microb Technol. 2012;51(5):263–268.
  • Zhao T, Liu D, Ren H, et al. d-Lactic acid production by Sporolactobacillus inulinus Y2-8 immobilized in fibrous bed bioreactor using corn flour hydrolyzate. J Microbiol Biotechnol. 2014;24(12):1664–1672.
  • Wang Z, Wang Y, Yang S-T, et al. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bioresour Technol. 2010;101(14):5557–5564.
  • Bu C-Y, Yan Y-X, Zou L-H, et al. One-pot biosynthesis of furfuryl alcohol and lactic acid via a glucose coupled biphasic system using single Bacillus coagulans NL01. Bioresour Technol. 2020;313:123705.
  • Dipasquale L, d'Ippolito G, Fontana A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: an unexpected deviation from the dark fermentation model. Hydrogen Energy. 2014;39(10):4857–4862.
  • Pradhan N, Dipasquale L, d'Ippolito G, et al. Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359T under capnophilic lactic fermentation conditions. Int J Hydrogen Energy. 2017;42(25):16023–16030.
  • Cheng F, Tang X-L, Kardashliev T. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol J. 2018;13(7):1700648.
  • Marsafari M, Ma J, Koffas M, et al. Genetically-encoded biosensors for analyzing and controlling cellular process in yeast. Curr Opin Biotechnol. 2020;64:175–182.
  • Rogers J, Taylor N, Church G. Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol. 2016;42:84–91.
  • Lin J-L, Wagner JM, Alper HS. Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol Adv. 2017;35(8):950–970.
  • Hanko E, Minton N, Malys N. Design, cloning and characterization of transcription factor-based inducible gene expression systems. Methods Enzymol. 2019;621:153–169.
  • Aguilera L, Campos E, Giménez R, et al. Dual role of LldR in regulation of the lldPRD operon, involved in l-lactate metabolism in Escherichia coli. J Bacteriol. 2008;190(8):2997–3005.
  • Gao Y-G, Suzuki H, Itou H, et al. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in l-lactate and sugar utilization. Nucleic Acids Res. 2008;36(22):7110–7123.
  • Gao C, Hu C, Zheng Z, et al. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol. 2012;194(10):2687–2692.
  • Chai Y, Kolter R, Losick R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol. 2009;191(8):2423–2430.
  • Chiu K-C, Lin C-J, Shaw G-C. Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology. 2014;160(10):2178–2189.
  • Rajeev L, Luning EG, Zane GM, et al. LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species. PLoS One. 2019;14(4):e0214960.
  • Schoelmerich MC, Katsyv A, Sung W, et al. Regulation of lactate metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol. 2018;20(12):4587–4595.
  • Lynch AS, Lin CCE. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol. 1996;178(21):6238–6249.
  • Dong JM, Taylor JS, Latour DJ, et al. Three overlapping lct genes involved in l-lactate utilization by Escherichia coli. J Bacteriol. 1993;175(20):6671–6678.
  • Lichtenegger S, Bina I, Roier S, et al. Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae. Int J Med Microbiol. 2014;304(3–4):490–498.
  • Georgi T, Engels V, Wendisch VF. Regulation of l-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. J Bacteriol. 2008;190(3):963–971.
  • Singh K, Ainala SK, Kim Y, et al. A novel d(–)-lactic acid-inducible promoter regulated by the GntR-family protein d-LldR of Pseudomonas fluorescens. Synth Syst Biotechnol. 2019;4(3):157–164.
  • Goers L, Ainsworth C, Goey CH, et al. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng. 2017;114(6):1290–1300.
  • Hanko EKR, Paiva AC, Jonczyk M, et al. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat Commun. 2020;11(1):1213.
  • Kim N, Sinnott R, Sandoval N. Transcription factor-based biosensors and inducible systems in non-model bacteria: current progress and future directions. Curr Opin Biotechnol. 2020;64:39–46.
  • Mahr R, Gätgens C, Gätgens J, et al. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng. 2015;32:184–194.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.