1,104
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Amylases from thermophilic bacteria: structure and function relationship

ORCID Icon & ORCID Icon
Pages 325-341 | Received 28 Mar 2020, Accepted 01 May 2021, Published online: 22 Aug 2021

References

  • Singh SP. Extreme environments and extremophiles. In: Satyanarayana T, editor. National Science Digital Laboratory (CSIR): E-Book, environmental microbiology. New Delhi: Council of Scientific and Industrial Research (CSIR); 2006. p. 1–35.
  • Han H, Ling Z, Khan A, et al. Improvements of thermophilic enzymes: from genetic modifications to applications. Bioresour Technol. 2019;279:350–361.
  • Sharma S, Vaid S, Bhat B, et al. Thermostable enzymes for industrial biotechnology. In: Singh RS, Singhania RR, Pandey A, Larroche C, editors. Advances in enzyme technology. Amsterdam: Elsevier; 2019. p. 469–495.
  • Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Bioresour Technol. 2003;89(1):17–34.
  • Kikani BA, Shukla RJ, Singh SP. Biocatalytic potential of thermophilic bacteria and actinomycetes. In: Mendez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Vol. 2. Badajoz: Formatex; 2010. p. 1000–1007.
  • Rigoldi F, Donini S, Redaelli A, et al. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2018;2(1):011501.
  • Amadei A, Del Galdo S, D'Abramo M. Density discriminates between thermophilic and mesophilic proteins. J Biomol Struct Dyn. 2018;36(12):3265–3273.
  • Sindhu R, Binod P, Madhavan A, et al. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour Technol. 2017;245(Pt B):1740–1748.
  • Siddiqui KS. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol. 2017;37(3):309–322.
  • Van Der Maarel MJ, Van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–155.
  • Reddy NS, Nimmagadda A, Rao KS. An overview of the microbial α-amylase family. Afr J Biotechnol. 2003;2(12):645–648.
  • Hii SL, Tan JS, Ling TC, et al. Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 2012;2012:921362.
  • Fitter J. Structural and dynamical features contributing to thermostability in alpha-amylases. Cell Mol Life Sci. 2005;62(17):1925–1937.
  • Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci. 2014;71(7):1149–1170.
  • Cihan AC, Yildiz ED, Sahin E, et al. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. World J Microbiol Biotechnol. 2018;34(7):95.
  • Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233–D238.
  • Janeček Š, Kuchtová A, Petrovičová S. A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia. 2015;70(10):1284–1294.
  • Mok SC, Teh AH, Saito JA, et al. Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Enzyme Microb Technol. 2013;53(1):46–54.
  • Nielsen JE, Borchert TV, Vriend G. The determinants of alpha-amylase pH-activity profiles. Protein Eng. 2001;14(7):505–512.
  • Uitdehaag JC, Mosi R, Kalk KH, et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family. Nat Struct Biol. 1999;6(5):432–436.
  • Manas NHA, Bakar FDA, Illias RM. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity. J Mol Graph Model. 2016;67:1–13.
  • Prakash O, Jaiswal N. alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol. 2010;160(8):2401–2414.
  • Sawle L, Ghosh K. How do thermophilic proteins and proteomes withstand high temperature? Biophys J. 2011;101(1):217–227.
  • Fitter J, Heberle J. Structural equilibrium fluctuations in mesophilic and thermophilic α-amylase. Biophys J. 2000;79(3):1629–1636.
  • Khajeh K, Nemat-Gorgani M. Comparative studies on a mesophilic and a thermophilic α-amylase. Appl Biochem Biotechnol. 2001;90(1):47–55.
  • Mahdavi A, Sajedi RH, Asghari SM, et al. An analysis of temperature adaptation in cold active, mesophilic and thermophilic Bacillus α-amylases. Int J Biol Macromol. 2011;49(5):1038–1045.
  • Kumar S, Dangi AK, Shukla P, et al. Thermozymes: adaptive strategies and tools for their biotechnological applications. Bioresour Technol. 2019;278:372–382.
  • Lakshmi SA, Shafreen RB, Balaji K, et al. Cloning, expression, homology modelling and molecular dynamics simulation of four domain-containing α-amylase from Streptomyces griseus. J Biomol Struct Dyn. 2021;39(6):2152–2112.
  • Yin H, Yang Z, Nie X, et al. Functional and cooperative stabilization of a two-metal (Ca, Zn) center in α-amylase derived from Flavobacteriaceae species. Sci Rep. 2017;7(1):1–8.
  • Nazmi AR, Reinisch T, Hinz HJ. Ca-binding to Bacillus licheniformis alpha-amylase (BLA). Arch Biochem Biophys. 2006;453(1):18–25.
  • Kumari A, Rosenkranz T, Kayastha AM, et al. The effect of calcium binding on the unfolding barrier: a kinetic study on homologous alpha-amylases. Biophys Chem. 2010;151(1–2):54–60.
  • Chai KP, Othman NFB, Teh AH, et al. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci Rep. 2016;6:23126.
  • Xie X, Li Y, Ban X, et al. Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Int J Biol Macromol. 2019;138:394–402.
  • Xie X, Qiu G, Zhang Z, et al. Importance of Trp139 in the product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Appl Microbiol Biotechnol. 2019;103(23–24):9433–9442.
  • Xie X, Ban X, Gu Z, et al. Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Biotechnol Lett. 2020;42(2):295–303.
  • Lee JT, Kanai H, Kobayashi T, et al. Cloning, nucleotide sequence, and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus. J Ferment Bioeng. 1996;82(5):432–438.
  • Tachibana Y, Leclere MM, Fujiwara S, et al. Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J Ferment Bioeng. 1996;82(3):224–232.
  • Hmidet N, Bayoudh A, Berrin JG, et al. Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1: cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem. 2008;43(5):499–510.
  • Wang P, Wang P, Tian J, et al. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep. 2016;6(1):22229.
  • Tang S, Xu T, Peng J, et al. Overexpression of an endogenous raw starch digesting mesophilic α‐amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. J Sci Food Agric. 2020;100(7):3013–3023.
  • Shukla RJ, Singh SP. Characteristics and thermodynamics of α-amylase from thermophilic actinobacterium, Laceyella sacchari TSI-2. Process Biochem. 2015;50(12):2128–2136.
  • Shukla RJ, Singh SP. Production optimization, purification and characterization of α‐amylase from thermophilic Bacillus licheniformis TSI‐14. Starch‐Stärke. 2015;67(7–8):629–639.
  • Zafar A, Aftab MN, Ud Din Z, et al. Cloning, purification and characterization of a highly thermostable amylase gene of Thermotoga petrophila into Escherichia coli. Appl Biochem Biotechnol. 2016;178(4):831–848.
  • Mijts BN, Patel BK. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology (Reading). 2002;148(Pt 8):2343–2349.
  • Wang G, Luo M, Lin J, et al. A new extremely halophilic, calcium independent and surfactant resistant α-amylase from Alkalibacterium sp. SL3. J Microbiol Biotechnol. 2019;29(5):765–775.
  • Liu S, Ahmed S, Fang Y. Cloning, expression and characterization of a novel α-amylase from Salinispora arenicola CNP193. Protein J. 2019;38(6):716–722.
  • Mehta D, Satyanarayana T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans. J Mol Catal B Enzym. 2013;85–86:229–238.
  • Mehta D, Satyanarayana T. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans. PLoS One. 2013;8(9):e73612.
  • Mehta D, Satyanarayana T. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl Microbiol Biotechnol. 2014;98(10):4503–4519.
  • Chen J, Chen X, Dai J, et al. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Int J Biol Macromol. 2015;80:200–207.
  • Allala F, Bouacem K, Boucherba N, et al. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline α-amylase from Tepidimonas fonticaldi strain HB23. Int J Biol Macromol. 2019;132:558–574.
  • Peng S, Chu Z, Lu J, et al. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress Chaperones. 2016;21(3):477–484.
  • Karakaş B, İnan M, Certel M. Expression and characterization of Bacillus subtilis PY22 α-amylase in Pichia pastoris. J Mol Catal B Enzym. 2010;64(3–4):129–134.
  • Yang CH, Huang YC, Chen CY, et al. Expression of Thermobifida fusca thermostable raw starch digesting alpha-amylase in Pichia pastoris and its application in raw sago starch hydrolysis. J Ind Microbiol Biotechnol. 2010;37(4):401–406.
  • Huang M, Gao Y, Zhou X, et al. Regulating unfolded protein response activator HAC1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris. Bioprocess Biosyst Eng. 2017;40(3):341–350.
  • Nisha M, Satyanarayana T. Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris. Appl Microbiol Biotechnol. 2017;101(6):2357–2369.
  • Kim JW, Kim YH, Lee HS, et al. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta. 2007;1774(5):661–669.
  • Kolcuoğlu Y, Colak A, Faiz O, et al. Cloning, expression and characterization of highly thermo- and pH-stable maltogenic amylase from a thermophilic bacterium Geobacillus caldoxylosilyticus TK4. Process Biochem. 2010;45(6):821–828.
  • Sharma A, Satyanarayana T. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles. 2012;16(3):515–522.
  • Roy JK, Borah A, Mahanta CL, et al. Cloning and overexpression of raw starch digesting α-amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α-amylase (AmyBS-I) in raw starch digestion and baking industry. J Mol Catal B Enzym. 2013;97:118–129.
  • Jeon EJ, Jung JH, Seo DH, et al. Bioinformatic and biochemical analysis of a novel maltose-forming α-amylase of the GH57 family in the hyperthermophilic archaeon Thermococcus sp. CL1. Enzyme Microb Technol. 2014;60:9–15.
  • Emtenani S, Asoodeh A, Emtenani S. Gene cloning and characterization of a thermostable organic-tolerant α-amylase from Bacillus subtilis DR8806. Int J Biol Macromol. 2015;72:290–298.
  • Zhang L, Yin H, Zhao Q, et al. High alkaline activity of a thermostable α-amylase (cyclomaltodextrinase) from thermoacidophilic Alicyclobacillus isolate. Ann Microbiol. 2018;68(12):881–888.
  • El-Sayed AK, Abou-Dobara MI, El-Fallal AA, et al. Heterologous expression, purification, immobilization and characterization of recombinant α-amylase AmyLa from Laceyella sp. DS3. Int J Biol Macromol. 2019;132:1274–1281.
  • Gandhi S, Salleh AB, Rahman RNZRA, et al. Expression and characterization of Geobacillus stearothermophilus SR74 recombinant α-amylase in Pichia pastoris. Biomed Res Int. 2015;2015:529059.
  • Yang CH, Huang YC, Chen CY, et al. Heterologous expression of Thermobifida fusca thermostable alpha-amylase in Yarrowia lipolytica and its application in boiling stable resistant sago starch preparation. J Ind Microbiol Biotechnol. 2010;37(9):953–960.
  • He L, Mao Y, Zhang L, et al. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol. 2017;17(1):1–13.
  • Friedberg F, Rhodes C. Cloning and characterization of the beta-amylase gene from Bacillus polymyxa. J Bacteriol. 1986;165(3):819–824.
  • Siggens KW. Molecular cloning and characterization of the beta-amylase gene from Bacillus circulans. Mol Microbiol. 1987;1(1):86–91.
  • Kitamoto N, Yamagata H, Kato T, et al. Cloning and sequencing of the gene encoding thermophilic beta-amylase of Clostridium thermosulfurogenes. J Bacteriol. 1988;170(12):5848–5854.
  • Nanmori T, Nagai M, Shimizu Y, et al. Cloning of the beta-amylase gene from Bacillus cereus and characteristics of the primary structure of the enzyme. Appl Environ Microbiol. 1993;59(2):623–627.
  • Jeong TH, Kim HO, Park JN, et al. Cloning and sequencing of the β-amylase gene from Paenibacillus sp. and its expression in Saccharomyces cerevisiae. J Microbiol Biotechnol. 2001;11(1):65–71.
  • Zheng Y, Xue Y, Zhang Y, et al. Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol. 2010;87(1):225–233.
  • Kim MS, Park JT, Kim YW, et al. Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol. 2004;70(7):3933–3940.
  • Li Z, Ji K, Dong W, et al. Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from Corallococcus sp. strain EGB. Protein Expr Purif. 2017;129:122–127.
  • Ertan F, Yagar H, Balkan B. Optimization of alpha-amylase immobilization in calcium alginate beads. Prep Biochem Biotechnol. 2007;37(3):195–204.
  • Iyer PV, Ananthanarayan L. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochem. 2008;43(10):1019–1032.
  • Kikani BA, Pandey S, Singh SP. Immobilization of the α-amylase of Bacillus amyloliquefaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance. Bioprocess Biosyst Eng. 2013;36(5):567–577.
  • Shukla RJ, Singh SP. Structural and catalytic properties of immobilized α-amylase from Laceyella sacchari TSI-2. Int J Biol Macromol. 2016;85:208–216.
  • Suman S, Ramesh K. Immobilization of a thermostable extracellular amylase from thermophilic Bacillus Species. J Pharmacol Sci. 2009;1(2):315–319.
  • Moehlenbrock MJ, Minteer SD. Introduction to the field of enzyme immobilization and stabilization. In: Enzyme stabilization and immobilization. New York (NY): Humana Press; 2017. p. 1–7.
  • Zdarta J, Meyer AS, Jesionowski T, et al. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: a critical review. Biotechnol Adv. 2019;37(7):107401.
  • Bilal M, Asgher M, Cheng H, et al. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Crit Rev Biotechnol. 2019;39(2):202–219.
  • Jaiswal N, Prakash O, Talat M, et al. α-Amylase immobilization on gelatin: optimization of process variables. J Genet Eng Biotechnol. 2012;10(1):161–167.
  • Dey TB, Kumar A, Banerjee R, et al. Improvement of microbial α-amylase stability: strategic approaches. Process Biochem. 2016;51(10):1380–1390.
  • Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, et al. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett. 2016;38(2):223–233.
  • Kumar GS, Rather GM, Gurramkonda C, et al. Thermostable α-amylase immobilization: enhanced stability and performance for starch biocatalysis. Biotechnol Appl Biochem. 2016;63(1):57–66.
  • Jiang J, Chen Y, Wang W, et al. Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase. Carbohydr Polym. 2016;151:600–605.
  • Nawawi NN, Hashim Z, Rahman RA, et al. Entrapment of porous cross-linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1 into calcium alginate for maltooligosaccharides synthesis. Int J Biol Macromol. 2020;150:80–89.
  • Husain Q. Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis. 2017;3(1):37–53.
  • Prakash O, Khare S. Immobilization of α-amylases and their analytical applications. In: Biocatalysis. Cham: Springer; 2019. p. 113–138.
  • Sohrabi N, Rasouli N, Torkzadeh M. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles. Chem Eng J. 2014;240:426–433.
  • Homaei A, Saberi D. Immobilization of α-amylase on gold nanorods: an ideal system for starch processing. Process Biochem. 2015;50(9):1394–1399.
  • Eslamipour F, Hejazi P. Evaluating effective factors on the activity and loading of immobilized α-amylase onto magnetic nanoparticles using a response surface-desirability approach. RSC Adv. 2016;6(24):20187–20197.
  • Singh V, Rakshit K, Rathee S, et al. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Bioresour Technol. 2016;214:528–533.
  • Defaei M, Taheri-Kafrani A, Miroliaei M, et al. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: a robust nanobiocatalyst. Int J Biol Macromol. 2018;113:354–360.
  • Ahmed SA, Abdella MA, El-Sherbiny GM, et al. Catalytic, kinetic and thermal properties of free and immobilized Bacillus subtilis-MK1 α-amylase on chitosan-magnetic nanoparticles. Biotechnol Rep (Amst). 2020;26:e00443.
  • Prakasham RS, Devi GS, Laxmi KR, et al. Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem C. 2007;111(10):3842–3847.
  • Soleimani M, Khani A, Najafzadeh K. α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B Enzym. 2012;74(1–2):1–5.
  • Uygun DA, Öztürk N, Akgöl S, et al. Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α‐amylase. J Appl Polym Sci. 2012;123(5):2574–2581.
  • Lee MH, Thomas JL, Chen YC, et al. Hydrolysis of magnetic amylase-imprinted poly(ethylene-co-vinyl alcohol) composite nanoparticles. ACS Appl Mater Interfaces. 2012;4(2):916–921.
  • Antony N, Balachandran S, Mohanan PV. Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 2016;211:624–630.
  • Talebi M, Vaezifar S, Jafary F, et al. Stability improvement of immobilized α-amylase using nano pore zeolite. Iran J Biotechnol. 2016;14(1):33–38.
  • Desai RP, Dave D, Suthar SA, et al. Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup. Int J Biol Macromol. 2021;169:228–238.
  • Gupta MN, Kaloti M, Kapoor M, et al. Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(2):98–109.
  • Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv. 2012;30(3):512–523.
  • Netto CG, Toma HE, Andrade LH. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym. 2013;85–86:71–92.
  • Khan MJ, Husain Q, Ansari SA. Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Appl Microbiol Biotechnol. 2013;97(4):1513–1522.
  • Verma ML, Naebe M, Barrow CJ, et al. Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One. 2013;8(9):e73642.
  • Hwang ET, Gu MB. Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci. 2013;13(1):49–61.
  • Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42(15):6223–6235.
  • Porto MDA, dos Santos JP, Hackbart H, et al. Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. Int J Biol Macromol. 2019;126:834–841.
  • Ji N, Liu C, Li M, et al. Interaction of cellulose nanocrystals and amylase: its influence on enzyme activity and resistant starch content. Food Chem. 2018;245:481–487.
  • Rubin-Pitel SB, Zhao H. Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen. 2006;9(4):247–257.
  • Kim BJ, Singh SP, Hayashi K. Characteristics of chimeric enzymes constructed between Thermotoga maritima and Agrobacterium tumefaciens β-glucosidases: role of C-terminal domain in catalytic activity. Enzyme Microb Technol. 2006;38(7):952–959.
  • Madhavan A, Sindhu R, Binod P, et al. Strategies for design of improved biocatalysts for industrial applications. Bioresour Technol. 2017;245(Pt B):1304–1313.
  • Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14(4):438–443.
  • Kim YW, Choi JH, Kim JW, et al. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol. 2003;69(8):4866–4874.
  • Kelly RM, Dijkhuizen L, Leemhuis H. Starch and alpha-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol. 2009;140(3–4):184–193.
  • Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol. 2013;33(4):365–378.
  • Ghollasi M, Ghanbari-Safari M, Khajeh K. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Enzyme Microb Technol. 2013;53(6–7):406–413.
  • Parashar D, Satyanarayana T. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. J Ind Microbiol Biotechnol. 2016;43(4):473–484.
  • Rao JUM, Satyanarayana T. Biophysical and biochemical characterization of a hyperthermostable and Ca2+-independent alpha-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol. 2008;150(2):205–219.
  • Ghollasi M, Khajeh K, Naderi-Manesh H, et al. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Appl Biochem Biotechnol. 2010;162(2):444–459.
  • Xian L, Wang F, Luo X, et al. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One. 2015;10(3):e0121531.
  • Cheng H, Luo Z, Lu M, et al. The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium for thermostability because of high-binding affinity to calcium. J Microbiol. 2017;55(5):379–387.
  • Du R, Song Q, Zhang Q, et al. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol. 2018;115:1151–1156.
  • Wu H, Tian X, Dong Z, et al. Engineering of Bacillus amyloliquefaciens α‐amylase with improved calcium independence and catalytic efficiency by error‐prone PCR. Starch‐Stärke. 2018;70(3–4):1700175.
  • Salem K, Elgharbi F, Ben Hlima H, et al. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α‐amylase. Biotechnol Progress. 2020;36(4):e2964.
  • Kikani BA, Singh SP. Single step purification and characterization of a thermostable and calcium independent α-amylase from Bacillus amyloliquefaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int J Biol Macromol. 2011;48(4):676–681.
  • Kikani BA, Singh SP. The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem. 2012;47(12):1791–1798.
  • Kikani BA, Singh SP. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy. Int J Biol Macromol. 2015;81:450–460.
  • Kikani BA, Kourien S, Rathod U. Stability and thermodynamic attributes of starch hydrolyzing α‐amylase of Anoxybacillus rupiensis TS‐4. Starch‐Stärke. 2020;72(1–2):1900105.
  • Bisgaard-Frantzen H, Svendsen A, Norman B, et al. Development of industrially important α-amylases. J Appl Glycosci. 1999;46(2):199–206.
  • Tang SY, Le QT, Shim JH, et al. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J. 2006;273(14):3335–3345.
  • Jones A, Lamsa M, Frandsen TP, et al. Directed evolution of a maltogenic α-amylase from Bacillus sp. TS-25. J Biotechnol. 2008;134(3–4):325–333.
  • Wang CH, Lu LH, Huang C, et al. Simultaneously improved thermostability and hydrolytic pattern of alpha-amylase by engineering central beta strands of TIM barrel. Appl Biochem Biotechnol. 2020;192(1):57–14.
  • Xie X, Ban X, Gu Z, et al. Structure-based engineering of a maltooligosaccharide-forming amylase to enhance product specificity. J Agric Food Chem. 2020;68(3):838–844.
  • Li Q, Yan Y, Liu X, et al. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations. Int J Biol Macromol. 2020;142:624–633.
  • Bessler C, Schmitt J, Maurer KH, et al. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci. 2003;12(10):2141–2149.
  • Liu YH, Lu FP, Li Y, et al. Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl Microbiol Biotechnol. 2008;80(5):795–803.
  • Yang H, Liu L, Shin HD, et al. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. J Biotechnol. 2013;164(1):59–66.
  • Lu Z, Wang Q, Jiang S, et al. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703. Sci Rep. 2016;6(1):22465–22410.
  • Borchert TV, Lassen SF, Svendsen A, et al. Oxidation stable amylases for detergents. In: Carbohydrate bioengineering. Amsterdam: Elsevier; 1995. p. 175–179.
  • Ozturk H, Ece S, Gundeger E, et al. Site-directed mutagenesis of methionine residues for improving the oxidative stability of α-amylase from Thermotoga maritima. J Biosci Bioeng. 2013;116(4):449–451.
  • Li JX, Wang SQ, Du QS, et al. Simulated protein thermal detection (SPTD) for enzyme thermostability study and an application example for pullulanase from Bacillus deramificans. Curr Pharm Des. 2018;24(34):4023–4033.
  • Purohit MK, Singh SP. Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol. 2009;49(3):338–344.
  • Siddhapura PK, Vanparia S, Purohit MK, et al. Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol. 2010;47(3):375–379.
  • Purohit MK, Singh SP. A metagenomic alkaline protease from saline habitat: cloning, over-expression and functional attributes. Int J Biol Macromol. 2013;53:138–143.
  • Kikani BA, Sharma AK, Singh SP. Metagenomic and culture-dependent analysis of the bacterial diversity of a hot spring reservoir as a function of the seasonal variation. Int J Environ Res. 2017;11(1):25–38.
  • Yun J, Kang S, Park S, et al. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol. 2004;70(12):7229–7235.
  • Sharma S, Khan FG, Qazi GN. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl Microbiol Biotechnol. 2010;86(6):1821–1828.
  • Vidya J, Swaroop S, Singh SK, et al. Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia. 2011;66(6):939–944.
  • Nair HP, Vincent H, Puthusseri RM, et al. Molecular cloning and characterization of a halotolerant α-amylase from marine metagenomic library derived from Arabian Sea sediments. 3 Biotech. 2017;7(1):65.
  • Wang H, Gong Y, Xie W, et al. Identification and characterization of a novel thermostable gh-57 gene from metagenomic fosmid library of the Juan de Fuca Ridge hydrothermal vent. Appl Biochem Biotechnol. 2011;164(8):1323–1338.
  • Liu Y, Lei Y, Zhang X, et al. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar Biotechnol (NY). 2012;14(3):253–260.
  • Elmarzugi NA, El Enshasy HA, Hamid MA, et al. α-Amylase economic and application value. World J Pharm Res. 2014;3:4890–4906.
  • Priyadarshini S, Pradhan SK, Ray P. Production, characterization and application of thermostable, alkaline α-amylase (AA11) from Bacillus cereus strain SP-CH11 isolated from Chilika Lake. Int J Biol Macromol. 2020;145:804–812.
  • Kambourova M. Recent advances in extremophilic α-amylases. In: Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Cham: Springer; 2017. p. 99–113.
  • Sun Y, Duan X, Wang L, et al. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase. J Biotechnol. 2016;217:53–61.
  • Lincoln L, More VS, More SS. Isolation, screening and optimization of extracellular glucoamylase from Paenibacillus amylolyticus strain NEO03. Biocatal Agric Biotechnol. 2019;18:101054.
  • Ghani M, Ansari A, Haider MS, et al. Purification and characterization of a thermostable starch‐saccharifying alpha‐1, 4‐glucan‐glucohydrolase produced by Bacillus licheniformis. Starch‐Stärke. 2019;71(11–12):1800352.
  • Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol. 2019;39(3):337–350.
  • Kapoor S, Rafiq A, Sharma S. Protein engineering and its applications in food industry. Crit Rev Food Sci Nutr. 2017;57(11):2321–2329.
  • Gupta R, Gigras P, Mohapatra H, et al. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38(11):1599–1616.
  • Hmidet N, Ali NEH, Haddar A, et al. Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J. 2009;47(1–3):71–79.
  • Khemakhem B, Ali MB, Aghajari N, et al. Engineering of the alpha-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Biotechnol Bioeng. 2009;102(2):380–389.
  • Bhange K, Chaturvedi V, Bhatt R. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol Rep (Amst). 2016;10:94–104.
  • Speckmann HD, Kottwitz B, Maurer KH, et al. Henkel AG and Co KGaA, detergents containing amylase and protease. United States patent US 6,380,147. 2002.
  • Bessler C, Wieland S, Maurer KH, et al. Alpha-amylase variants stabilized against dimerization and/or multimerization, method for the production thereof, and detergents and cleansers containing these alpha-amylase variants. United States patent US 9,353,361. 2016.
  • Feitkenhauer H. Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb Technol. 2003;33(2–3):250–258.
  • Ahlawat S, Dhiman SS, Battan B, et al. Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem. 2009;44(5):521–526.
  • Rebello S, Aneesh EM, Sindhu R, et al. Enzyme catalysis: a workforce to productivity of textile industry. In: Saran S, Babu V, Chaubey A, editors. High value fermentation products: human welfare. Vol. 2. New Jersey: Wiley; 2019. p. 49–65.
  • Morais RR, Pascoal AM, Pereira-Júnior MA, et al. Bioethanol production from Solanum lycocarpum starch: a sustainable non-food energy source for biofuels. Renew Energy. 2019;140:361–366.
  • Cripwell RA, Rose SH, Favaro L, et al. Construction of industrial Saccharomyces cerevisiae strains for the efficient consolidated bioprocessing of raw starch. Biotechnol Biofuels. 2019;12(1):201.
  • Alpha-amylase baking enzyme market analysis by source [fungi, bacteria (maltogenic, G4), PlantBased], by application (breads, cookies & biscuits, desserts) and segment forecasts to 2024; 2020; [cited 2020 Dec 25]. Available from: https://www.grandviewresearch.com/industryanalysis/alpha-amylase-baking-enzyme-market
  • Karimi M, Biria D. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes. Chemosphere. 2016;152:166–172.
  • Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: α-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. Chemosphere. 2020;250:126202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.