1,785
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Potential use of fungal-bacterial co-cultures for the removal of organic pollutants

ORCID Icon, &
Pages 361-383 | Received 20 Mar 2020, Accepted 23 May 2021, Published online: 29 Jul 2021

References

  • Witherden EA, Shoaie S, Hall RA, et al. The human mucosal mycobiome and fungal community interactions. JoF. 2017;3(4):56.
  • de Menezes AB, Richardson AE, Thrall PH. Linking fungal–bacterial co-occurrences to soil ecosystem function. Curr Opin Biotechnol. 2017;37:135–141.
  • Getzke F, Thiergart T, Hacquard S. Contribution of bacterial-fungal balance to plant and animal health. Curr Opin Microbiol. 2019;49:66–72.
  • Boer W. d, Folman LB, Summerbell RC, et al. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29(4):795–811.
  • Frey-Klett P, Burlinson P, Deveau A, et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev. 2011;75(4):583–609.
  • Little AEF, Robinson CJ, Peterson SB, et al. Rules of engagement: Interspecies interactions that regulate microbial communities. Annu Rev Microbiol. 2008;62(1):375–401.
  • Scherlach K, Graupner K, Hertweck C. Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol. 2013;67(1):375–397.
  • Kurth F, Zeitler K, Feldhahn L, et al. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol. 2013;13(1):205.
  • Nazir R, Warmink JA, Voordes DC, et al. Inhibition of mushroom formation and Induction of glycerol release-ecological strategies of Burkholderia terrae BS001 to create a hospitable niche at the fungus Lyophyllum sp. strain Karsten. Microb Ecol. 2013;65(1):245–254.
  • Riedlinger J, Schrey SD, Tarkka MT, et al. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505; Strain AcH 505. Appl Environ Microbiol. 2006;72(5):3550–3557.
  • Cafaro MJ, Poulsen M, Little AEF, et al. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc Biol Sci. 1713;278:1814–1822.
  • Tarkka MT, Sarniguet A, Frey-Klett P. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet. 2009;55(3):233–243.
  • Deveau A, Bonito G, Uehling J, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42(3):335–352.
  • Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9(3):177–192.
  • Mawad AMM, et al. The role of fungi and genes for the removal of environmental contaminants from water/wastewater treatment plants. In Hesham AE-L, et al., editors. Fungal biotechnology and bioengineering. Cham: Springer International Publishing; 2020. p. 349–370.
  • Peng R-H, Xiong A-S, Xue Y, et al. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev. 2008;32(6):927–955.
  • Semple KT, Doick KJ, Wick LY, et al. Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut. 2007;150(1):166–176.
  • Lade HS, Waghmode TR, Kadam AA, et al. Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeter Biodegr. 2012;72(Supplement C):94–107.
  • Su W-T, Lin C-H. Fungal–bacterial synergism enhanced decolorization of reactive red 120 by response surface methodology. Int Biodeter Biodegr. 2013;82(Supplement C):1–8.
  • Shi S, Ma F, Sun T, et al. Mineralization and kinetics of reactive brilliant red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium. Appl Biochem Biotechnol. 2014;172(2):1106–1120.
  • Gou M, Qu Y, Zhou J, et al. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J Hazard Mater. 2009;170(1):314–319.
  • Qu Y, Shi S, Ma F, et al. Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour Technol. 2010;101(21):8016–8023.
  • Svobodová K, Petráčková D, Kozická B, et al. Mutual interactions of Pleurotus ostreatus with bacteria of activated sludge in solid-bed bioreactors. World J Microbiol Biotechnol. 2016;32(6):94.
  • Lade H, Kadam A, Paul D, et al. Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent. Arch Environ Prot. 2016;42(4):12–21.
  • Kurade MB, Waghmode TR, Patil SM, et al. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem Eng J. 2017;307:1026–1036.
  • Pedroza-Camacho LD, et al. Effect of domestic wastewater as co-substrate on biological stain wastewaer trearment using fungal/bacterial consortia in pilot plant and greenhouse reuse. J Water Resour Prot. 2018;10:369–393.
  • Knudsen BE, Ellegaard-Jensen L, Albers CN, et al. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM). Environ Pollut. 2013;181(Supplement C):122–127.
  • Xu G, Li Y, Zheng W, et al. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett. 2007;29(10):1469–1473.
  • Sariwati A, Purnomo AS, Kamei I. Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation of DDT. Curr Microbiol. 2017;74(9):1068–1075.
  • Purnomo AS, Ashari K, Hermansyah FT. Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J Microbiol Biotechnol. 2017;27(7):1306–1315.
  • Sariwati A, Purnomo AS. The effect of Pseudomonas aeruginosa Addition on 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation by brown-rot fungus Fomitopsis pinicola. Indones J Chem. 2018;18(1):75–81.
  • Ellegaard-Jensen L, Knudsen BE, Johansen A, et al. Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. Sci Total Environ. 2014;466-467(Supplement C):699–705.
  • Hai FI, Modin O, Yamamoto K, et al. Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng. 2012;43(3):459–462.
  • Ma X-K, Li T-T, Fam H, et al. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial-fungal consortium. Environ Technol. 2018;39(16):2128–2137.
  • Ma X-K, Ding N, Peterson EC, et al. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene. Appl Microbiol Biotechnol. 2016;100(17):7741–7750.
  • Kim J, Lee C. Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol Bioprocess Eng. 2007;12(4):410–416.
  • Zang S, Lian B, Wang J, et al. Biodegradation of 2-naphthol and its metabolites by coupling Aspergillus niger with Bacillus subtilis. J Environ Sci. 2010;22(5):669–674.
  • Chávez-Gómez B, Quintero R, Esparza-Garcı́a F, et al. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour Technol. 2003;89(2):177–183.
  • Liu S, Hou Y, Sun G. Synergistic degradation of pyrene and volatilization of arsenic by cocultures of bacteria and a fungus. Front Environ Sci Eng. 2013;7(2):191–199.
  • Bhattacharya S, Das A, Palaniswamy M, et al. Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures. J Basic Microbiol. 2017;57(2):95–103.
  • Machín-Ramírez C, Morales D, Martínez-Morales F, et al. Benzo[a]pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. Int Biodeter Biodegr. 2010;64(7):538–544.
  • Zhang C, Qi J, Cao Y. Synergistic effect of yeast-bacterial co-culture on bioremediation of oil-contaminated soil. Bioremediation J. 2014;18(2):136–146.
  • Yuan X, Zhang X, Chen X, et al. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour Technol. 2018;264:190–197.
  • Ma X-K, Ding N, Peterson EC. Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation. 2015;26(3):259–269.
  • Maddela NR, Burgos R, Kadiyala V, et al. Removal of petroleum hydrocarbons from crude oil in solid and slurry phase by mixed soil microorganisms isolated from Ecuadorian oil fields. Int Biodeter Biodegr. 2016;108:85–90.
  • Perera M, Wijayarathna D, Wijesundera S, et al. Biofilm mediated synergistic degradation of hexadecane by a naturally formed community comprising Aspergillus flavus complex and Bacillus cereus group. BMC Microbiol. 2019;19(1):84.
  • Nguyen LN, Hai FI, Yang S, et al. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresour Technol. 2013;148(Supplement C):234–241.
  • Li X, Xu Q-M, Cheng J-S, et al. Improving the bioremoval of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture of Pycnoporus sanguineus and Alcaligenes faecalis. Bioresour Technol. 2016;220:333–340.
  • Cheng Z, Li C, Kennes C, et al. Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium. Int Biodeter Biodegr. 2017;123(Supplement C):276–285.
  • Zhai J, Shi P, Wang Z, et al. A comparative study of bacterial and fungal-bacterial steady-state stages of a biofilter in gaseous toluene removal: performance and microbial community. J Chem Technol Biotechnol. 2017;92(11):2853–2861.
  • Cheng Z, Lu L, Kennes C, et al. Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: microbial analysis, performance and starvation response. J Haz Mat. 2016;303(Supplement C):83–93.
  • Briones A, Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol. 2003;14(3):270–276.
  • Lee KWK, Periasamy S, Mukherjee M, et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. Isme J. 2014;8(4):894–907.
  • Mee MT, Wang HH. Engineering ecosystems and synthetic ecologies. Mol Biosyst. 2012;8(10):2470–2483.
  • West SA, Cooper GA. Division of labour in microorganisms: an evolutionary perspective. Nat Rev Microbiol. 2016;14(11):716–723.
  • Beck AE, Hunt KA, Bernstein HC, et al. Chapter 15 - interpreting and designing microbial communities for bioprocess applications, from components to interactions to emergent properties. In Eckert C. A. and Trinh C.T., editors. Biotechnology for biofuel production and optimization. Amsterdam: Elsevier; 2016. p. 407–432.
  • Badia-Fabregat M, Lucas D, Tuomivirta T, et al. Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Sci Total Environ. 2017;579:366–377.
  • Fester T, Giebler J, Wick LY, et al. Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol. 2014;27:168–175.
  • Mahmood S, Khalid A, Arshad M, et al. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit Rev Biotechnol. 2016;36(4):639–651.
  • Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24(5):691–710.
  • Cruz-Morató C, Lucas D, Llorca M, et al. Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ. 2014;493:365–376.
  • Wang G, Wen J, Li H, et al. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. J Ind Microbiol Biotechnol. 2009;36(6):809–814.
  • Aydin S, Karaçay HA, Shahi A, et al. Aerobic and anaerobic fungal metabolism and omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev. 2017;31(2):61–72.
  • Mandal SK, Das N, Bioremediation Laboratory, School of Bio Sciences and Technology (SBST), VIT University, Vellore – 632 014, India. Biodegradation of perylene and benzo [ghi] perylene (5-6 rings) using yeast consortium: kinetic study, enzyme analysis and degradation pathway. JEB. 2018;39(1):5–15.
  • Chan LG, Cohen JL, de Moura Bell JMLN. Conversion of agricultural streams and food-processing by-products to value-added compounds using filamentous fungi. Annu Rev Food Sci Technol. 2018;9(1):503–523.
  • Prenafeta-Boldú FX, Illa J, van Groenestijn JW, et al. Influence of synthetic packing materials on the gas dispersion and biodegradation kinetics in fungal air biofilters. Appl Microbiol Biotechnol. 2008;79(2):319–327.
  • Cheng Z, Zhang X, Kennes C, et al. Differences of cell surface characteristics between the bacterium Pseudomonas veronii and fungus Ophiostoma stenoceras and their different adsorption properties to hydrophobic organic compounds. Sci Total Environ. 2019;650(Pt 2):2095–2106.
  • Lokendra S. Biodegradation of synthetic dyes: a mycoremediation approach for degradation/decolourization of textile dyes and effluents. J Appl Biotechnol Bioeng. 2017;3(5):430–435.
  • Kennes C, Veiga MC. Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol. 2004;113(1–3):305–319.
  • Joshi T, Iyengar L, Singh K, et al. Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol. 2008;99(15):7115–7121.
  • Lebrero R, Rodríguez E, Martin M, et al. H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: a comparative study. Water Res. 2010;44(13):3905–3914.
  • Pandhal J, Noirel J. Synthetic microbial ecosystems for biotechnology. Biotechnol Lett. 2014;36(6):1141–1151.
  • Zhou D, Zhang X, Du Y, et al. Insights into the synergistic effect of fungi and bacteria for reactive red decolorization. J Spectrosc. 2014;2014:1–4.
  • Válková H, Novotný Č, Malachová K, et al. Effect of bacteria on the degradation ability of Pleurotus ostreatus. Sci Total Environ. 2017;584–585:1114–1120.
  • Velmourougane K, Prasanna R, Singh SB, et al. Sequence of inoculation influences the nature of extracellular polymeric substances and biofilm formation in Azotobacter chroococcum and Trichoderma viride. FEMS Microbiol Ecol. 2017;93(7):fix066.
  • Velez P, Espinosa-Asuar L, Figueroa M, et al. Nutrient dependent cross-kingdom interactions: fungi and bacteria from an oligotrophic desert oasis. Front Microbiol. 2018;9:1755.
  • Jambon I, Thijs S, Weyens N, et al. Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interactions. 2018;13(1):119–130.
  • Chaudhry Q, Blom-Zandstra M, Gupta S, et al. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int. 2005;12(1):34–48.
  • Or D, Smets BF, Wraith JM, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv Water Resour. 2007;30(6–7):1505–1527.
  • Gang W, Dani O. Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces. Environ Microbiol. 2010;12(5):1363–1373.
  • Bayry J, Aimanianda V, Guijarro JI, et al. Hydrophobins-unique fungal proteins. PLoS Pathog. 2012;8(5):e1002700.
  • Wessels JG. Hydrophobines, proteins that change the nature of the fungal surface. Adv Microbiol Physiol. 1997;38:1–45.
  • Kohlmeier S, Smits THM, Ford RM, et al. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39(12):4640–4646.
  • Wick LY, Remer R, Würz B, et al. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol. 2007;41(2):500–505.
  • Worrich A, König S, Miltner A, et al. Mycelium-like networks increase bacterial dispersal, growth, and biodegradation in a model ecosystem at various water potentials. Appl Environ Microbiol. 2016;82(10):2902–2908.
  • Vila T, Nazir R, Rozental S, et al. The role of hydrophobicity and surface receptors at hyphae of Lyophyllum sp. strain karsten in the interaction with Burkholderia terrae BS001 - implications for interactions in Soil. Front Microbiol. 2016;7:1689. Published 2016 Oct 27. doi:https://doi.org/10.3389/fmicb.2016.01689
  • Yang P, van Elsas JD. Mechanisms and ecological implications of the movement of bacteria in soil. Appl Soil Ecol. 2018;129:112–120.
  • Nazir R, Zhang M, de Boer W, et al. The capacity to comigrate with Lyophyllum sp. strain Karsten through different soils is spread among several phylogenetic groups within the genus Burkholderia. Soil Biol Biochem. 2012;50:221–233.
  • Warmink JA, van Elsas JD. Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms. Appl Environ Microbiol. 2009;75(9):2820–2830.
  • Yang P, Oliveira da Rocha Calixto R, van Elsas JD. Migration of Paraburkholderia terrae BS001 along old fungal hyphae in soil at various pH levels. Microb Ecol. 2018;76(2):443–452.
  • Pion M, Spangenberg JE, Simon A, et al. Bacterial farming by the fungus Morchella crassipes. Proc Biol Sci. 2013;280(1773):20132242.
  • Bravo D, Cailleau G, Bindschedler S, et al. Isolation of oxalotrophic bacteria able to disperse on fungal mycelium. FEMS Microbiol Lett. 2013;348(2):157–166.
  • Nazir R, Tazetdinova DI, van Elsas JD. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents. Front Microbiol. 2014;5:598.
  • Warmink JA, Nazir R, Corten B, et al. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43(4):760–765.
  • Christofides SR, Bettridge A, Farewell D, et al. The influence of migratory Paraburkholderia on growth and competition of wood-decay fungi. Fungal Ecol. 2020;45:100937.
  • Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol. 2014;98(15):6583–6597.
  • Schmidtová Z, Kodešová R, Grabicová K, et al. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole in seven soils. J Contam Hydrol. 2020;234:103680.
  • Park J, Cho KH, Lee E, et al. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction. Science Total Environ. 2018;635:1345–1350.
  • Quintana JB, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res. 2005;39(12):2654–2664.
  • Tran NH, Urase T, Ngo HH, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol. 2013;146:721–731.
  • Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol. 2004;50(3):245–253.
  • Netzker T, Fischer J, Weber J, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299. Published 2015 Apr 20. doi:https://doi.org/10.3389/fmicb.2015.00299
  • Macellaro G, Pezzella C, Cicatiello P, et al. Fungal laccases degradation of endocrine disrupting compounds. Biomed Res Int. 2014;2014:614038–614038.
  • Khunjar WO, Mackintosh SA, Skotnicka-Pitak J, et al. Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim. Environ Sci Technol. 2011;45(8):3605–3612.
  • Yang S, Hai FI, Nghiem LD, et al. Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour Technol. 2013;141:97–108.
  • Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol. 2009;12(2):205–214.
  • Schroeckh V, Scherlach K, Nützmann H-W, et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009;106(34):14558–14563.
  • Daniel R. The soil metagenome-a rich resource for the discovery of novel natural products. Curr Opin Biotechnol. 2004;15(3):199–204.
  • Rateb ME, Hallyburton I, Houssen WE, et al. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv. 2013;3(34):14444–14450.
  • Wu TY, Mohammad AW, Lim SL, et al. Recent advances in the reuse of wastewaters for promoting sustainable development. In Sharma SK and Sanghi R, editors. Wastewater reuse management. Dordrecht, Netherlands: Springer; 2013. p. 47–103.
  • Bisschops I, Spanjers H. Literature review on textile wastewater characterisation. Environ Technol. 2003;24(11):1399–1411.
  • Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019;16(2):1193–1226.
  • Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters: a review. Bioresour Technol. 2001;79(3):251–262.
  • Sen SK, Raut S, Bandyopadhyay P, et al. Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev. 2016;30(3):112–133.
  • Gavrilescu M. Fate of pesticides in the environment and its bioremediation. Eng Life Sci. 2005;5(6):497–526.
  • Li X, He J, Li S. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol. 2007;158(2):143–149.
  • Singh BK, Walker A, Morgan JAW, et al. Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol. 2004;70(8):4855–4863.
  • Yang C, Liu N, Guo X, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett. 2006;265(1):118–125.
  • Liu ZY, Chen X, Shi Y, et al. Bacterial degradation of chlorpyrifos by Bacillus cereus. AMR. 2011;356–360:676–680.
  • Sørensen SR, Holtze MS, Simonsen A, et al. Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol. 2007;73(2):399–406.
  • Mori T, Sudo S, Kawagishi H, et al. Biodegradation of diuron in artificially contaminated water and seawater by wood colonized with the white-rot fungus Trametes versicolor. J Wood Sci. 2018;64(5):690–696.
  • Purnomo AS, Mori T, Kamei I, et al. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeter Biodegr. 2010;64(5):397–402.
  • Pinto AP, Rodrigues SC, Caldeira AT, et al. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. Sci Total Environ. 2016;541:1372–1381.
  • Kaur H, Kapoor S, Kaur G. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess. 2016;188(10):588.
  • Purnomo AS, Kamei I, Kondo R. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng. 2008;105(6):614–621.
  • Oliveira BR, Penetra A, Cardoso VV, et al. Biodegradation of pesticides using fungi species found in the aquatic environment. Environ Sci Pollut Res Int. 2015;22(15):11781–11791.
  • Bisht J, Harsh NSK, Palni LMS, et al. Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation. 2019;29(3):63–77.
  • Purnomo AS, Maulianawati D, Kamei I. Ralstonia pickettii enhance the DDT biodegradation by Pleurotus eryngii. J Microbiol Biotechnol. 2019;29(9):1424–1433.
  • Grizca Boelan E, Setyo Purnomo A. Abilities of co-cultures of white-rot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on biodegradation DDT. J Phys Conf Ser. 2018;1095:012015.
  • Mata-Sandoval JC, Karns J, Torrents A. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J Agric Food Chem. 2001;49(7):3296–3303.
  • Joss A, Zabczynski S, Göbel A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res. 2006;40(8):1686–1696.
  • Jelic A, Cruz-Morató C, Marco-Urrea E, et al. Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Res. 2012;46(4):955–964.
  • Asif MB, Hai FI, Singh L, et al. Degradation of pharmaceuticals and personal care products by white-rot fungi—a critical review. Curr Pollution Rep. 2017;3(2):88–103.
  • Badia-Fabregat M, Rosell M, Caminal G, et al. Use of stable isotope probing to assess the fate of emerging contaminants degraded by white-rot fungus. Chemosphere. 2014;103:336–342.
  • Marco-Urrea E, Pérez-Trujillo M, Vicent T, et al. Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere. 2009;74(6):765–772.
  • Nguyen LN, Hai FI, Kang J, et al. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system. Bioresour Technol. 2012;113:169–173.
  • Hai FI, Tessmer K, Nguyen LN, et al. Removal of micropollutants by membrane bioreactor under temperature variation. J Membrane Sci. 2011;383(1–2):144–151.
  • Yu H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2002;20(2):149–183.
  • Lundstedt S, White PA, Lemieux CL, et al. Sources, fate, and toxicity hazards of oxygeneted polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO. 2007;36(6):475–485.
  • Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369.
  • Johnsen AR, Wick LY, Harms H. Principles of microbial PAH-degradation in soil. Environ Pollut. 2005;133(1):71–84.
  • Mishra S, Singh SN, Pande V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol. 2014;164:299–308.
  • Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol. 2000;66(3):1007–1019.
  • Roch F, Alexander M. Biodegradation of hydrophobic compounds in the presence of surfactants. Environ Toxicol Chem. 1995;14(7):1151–1158.
  • Herrmann A. Volatiles – an interdisciplinary approach. In Herrmann A, editor. The chemistry and biology of volatiles. Firmenich SA, Geneve, Switzerland: John Wiley & Sons; 2010.
  • Khan FI, Kr. Ghoshal A. Removal of volatile organic compounds from polluted air. J Loss Prevent Proc. 2000;13(6):527–545.
  • Aizpuru A, Dunat B, Christen P, et al. Fungal biofiltration of toluene on ceramic rings. J Environ Eng. 2005;131(3):396–402.
  • Estévez E, Veiga MC, Kennes C. Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii. Appl Microbiol Biotechnol. 2005;67(4):563–568.
  • van Groenestijn JW, Liu JX. Removal of alpha-pinene from gases using biofilters containing fungi. Atmos Environment. 2002;36(35):5501–5508.
  • Cox HHJ, Houtman JHM, Doddema HJ, et al. Enrichment of fungi and degradation of styrene in biofilters. Biotechnol Lett. 1993;15(7):737–742.
  • Ortiz I, et al. Effects of inoculum type, packing material an operating conditions on pentane biofiltration. Chem Biochem Eng Q. 2008;22(2):179–184.
  • Hernández-Meléndez O, Bárzana E, Arriaga S, et al. Fungal removal of gaseous hexane in biofilters packed with poly(ethylene carbonate) pine sawdust or peat composites. Biotechnol Bioeng. 2008;100(5):864–871.
  • Vergara-Fernández A, Yánez D, Morales P, et al. Biofiltration of benzo[α]pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature. Chem Eng J. 2018;332:702–710.
  • Shahab RL, Brethauer S, Luterbacher JS, et al. Engineering of ecological niches to create stable artificial consortia for complex biotransformations. Curr Opin Biotechnol. 2020;62:129–136.
  • Roell GW, Zha J, Carr RR, et al. Engineering microbial consortia by division of labor. Microb Cell Fact. 2019;18(1):35.
  • Sgobba E, Wendisch VF. Synthetic microbial consortia for small molecule production. Curr Opin Biotechnol. 2020;62:72–79.
  • Kylilis N, Tuza ZA, Stan G-B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun. 2018;9(1):2677.
  • Jawed K, Yazdani SS, Koffas MAG. Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun. 2019;9:e00095.
  • Jiang Y, Dong W, Xin F, et al. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 2020;38(8):828–831.
  • Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol. 2008;177(4):859–876.
  • Spini G, Spina F, Poli A, et al. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Front Microbiol. 2018;9:2543.
  • Demmig-Adams B, Dumlao MR, Herzenach MK, et al. Acclimation. In Jørgensen SE and Fath BD, editors. Encyclopedia of ecology. Oxford: Academic Press; 2008. p. 15–23.
  • Elvers KT, Leeming K, Lappin-Scott HM. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum. J Ind Microbiol Biotechnol. 2001;26(3):178–183.
  • Triveni S, Prasanna R, Saxena AK. Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiol. 2012;57(5):431–437.
  • Basu S, Bose C, Ojha N, et al. Evolution of bacterial and fungal growth media. Bioinformation. 2015;11(4):182–184.
  • Maddox IS, Richert SH. Use of response surface methodology for the rapid optimization of microbiological media. J Appl Bacteriol. 1977;43(2):197–204.
  • Abdullah Mohammed El M, Hamidi Abdul A. Hydrocarbon biodegradation using agro-industrial wastes as co-substrates. In Bhakta JN, editor. Handbook of research on inventive bioremediation techniques. Hershey, PA, USA: IGI Global; 2017. p. 155–185.
  • Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42(6):926–934.
  • Ben Said S, Or D. Synthetic microbial ecology: engineering habitats for modular consortia. Front Microbiol. 2017;8:1125. Published 2017 Jun 16. doi:https://doi.org/10.3389/fmicb.2017.01125
  • Kim HJ, Boedicker JQ, Choi JW, et al. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA. 2008;105(47):18188–18193.
  • Hatzenpichler R, Krukenberg V, Spietz RL, et al. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18(4):241–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.