1,474
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Enzyme producing insect gut microbes: an unexplored biotechnological aspect

ORCID Icon, ORCID Icon & ORCID Icon
Pages 384-402 | Received 28 Jul 2020, Accepted 27 Mar 2021, Published online: 06 Oct 2021

References

  • Moran NA, Telang A. Bacteriocyte-associated symbionts of insects. Bioscience. 1998;48(4):295–304.
  • Wiseman A. Introduction to principles. In: Wiseman A, editor. Handbook of enzyme biotechnology. Padstow. Wiley; 1977.
  • Wier A, Dolan M, Grimaldi D, et al. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc Natl Acad Sci USA. 2002;99(3):1410–1413.
  • Xie S, Lan Y, Sun C, et al. Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol. 2019;35(2):25.
  • Yun JH, Roh SW, Whon TW, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80(17):5254–5264.
  • Kudo R, Masuya H, Endoh R, et al. Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. Isme J. 2019;13(3):676–685.
  • Moya A, Peretó J, Gil R, et al. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9(3):218–229.
  • Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev. 2008;25(1):203–244.
  • Hongoh Y, Deevong P, Inoue T, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71(11):6590–6599.
  • Martinson VG, Moy J, Moran NA. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol. 2012;78(8):2830–2840.
  • Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome. 2020;8(1):1–20.
  • Tokuda G, Tsuboi Y, Kihara K, et al. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc Biol Sci. 2014;281(1789):20140990.
  • Potrikus CJ, Breznak JA. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA. 1981;78(7):4601–4605.
  • Hayashi A, Aoyagi H, Yoshimura T, et al. Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng. 2007;103(4):358–367.
  • Appel HM. The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Insect-plant interactions (1993). London: CRC Press; 2017. p. 225–240.
  • Dowd PF. Insect fungal symbionts: a promising source of detoxifying enzymes. J Ind Microbiol. 1992;9(3–4):149–161.
  • Vega FE, Dowd PF. The role of yeasts as insect endosymbionts. In: Insect-fungal associations: ecology and evolution. New York (NY): Oxford University Press; 2005. p. 211–243.
  • Kikuchi Y, Hayatsu M, Hosokawa T, et al. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109(22):8618–8622.
  • He L, Liu B, Tian J, et al. Culturable epiphytic bacteria isolated from Teleogryllus occipitalus crickets metabolize insecticides. Arch Insect Biochem Physiol. 2018;99(2):e21501.
  • Prado SS, Almeida RP. Role of symbiotic gut bacteria in the development of Acrosternum hilare and Murgantia histrionica. Entomol Exp Appl. 2009;132(1):21–29.
  • Matson EG, Gora KG, Leadbetter JR. Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of lower termites and the wood roach. PLOS One. 2011;6(4):e19316.
  • Yang J, Yang Y, Wu WM, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776–13784.
  • Yang Y, Yang J, Wu WM, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol. 2015;49(20):12080–12086.
  • Fukui T, Kawamoto M, Shoji K, et al. The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog. 2015;11(7):e1005048.
  • Wang L, Feng Y, Tian J, et al. Farming of a defensive fungal mutualist by an attelabid weevil. Isme J. 2015;9(8):1793–1801.
  • Salem H, Bauer E, Strauss AS, et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc Biol Sci. 2014;281(1796):20141838.
  • Liang X, Sun C, Chen B, et al. Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol. 2018;102(11):4951–4962.
  • Ahsaei SM, Hosseininaveh V, Talaei-Hassanloui R, et al. Contribution of bacterial gut symbionts to digestion and development in Podisus maculiventris (Hemiptera: Pentatomidae). Proc Natl Acad Sci USA. 2020;90:959–967.
  • Moran NA, Baumann P. Bacterial endosymbionts in animals. Curr Opin Microbiol. 2000;3(3):270–275.
  • Moran NA. Symbiosis. Curr Biol. 2006;16:866–871.
  • Shi W, Syrenne R, Sun JZ, et al. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci. 2010;17(3):199–219.
  • Li S, Yang X, Yang S, et al. Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J. 2012;2(3):e201209017.
  • Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv. 2015;33(7):1443–1454.
  • Liu L, Yang H, Shin HD, et al. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered. 2013;4(4):212–223.
  • Banerjee S, Maiti TK, Roy RN. Identification and product optimization of amylolytic Rhodococcus opacus GAA 31.1 isolated from gut of Gryllotalpa africana. J Genet Eng Biotechnol. 2016;14(1):133–141.
  • Industrial enzymes market by type (carbohydrases, proteases, non-starch polysaccharides & others), application (food &beverage, cleaning agents, animal feed & others), brands & by region global trends and forecasts to 2026. Available from: www.bccresearch.com.http://www.marketsandmarkets.com/Market-Reports/industrial-enzymesmarket-237327836.html (accessed 2020 June 14).
  • Chapman RF. Structure of the digestive system. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 4. Oxford: Pergamon Press; 2013. p.
  • Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol. 1997;42(1):525–550.
  • Ha YR, Oh SR, Seo ES, et al. Detection of heparin in the salivary gland and midgut of Aedes togoi. Korean J Parasitol. 2014;52(2):183–188.
  • Kaufman MG, Klug MJ, Merritt RW. Growth and food utilization parameters of germ-free house crickets, Acheta domesticus. J Insect Physiol. 1989;35(12):957–967.
  • Zurek L, Keddie BA. Contribution of the colon and colonie bacterial flora to metabolism and development of the American cockroach Periplaneta americana L. J Insect Physiol. 1996;42(8):743–748.
  • Kashima T, Nakamura T, Tojo S. Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol. 2006;52(8):816–825.
  • Tanada Y, Kaya HK. Associations between insects and nonpathogenics microorganisms. In Tanada Y, Kaya HK, editors. Insect pathology. New York: Academic Press; 1993. p.
  • Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735.
  • Brune A. Methanogens in the digestive tract of termites. In: (Endo) symbiotic methanogenic archaea. Cham: Springer; 2018. p. 81–101.
  • Hongoh Y. Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem. 2010;74(6):1145–1151.
  • Egert M, Wagner B, Lemke T, et al. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol. 2003;69(11):6659–6668.
  • Lemke T, Stingl U, Egert M, et al. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol. 2003;69(11):6650–6658.
  • Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
  • Erban T, Hubert J. Determination of pH in regions of the midguts of acaridid mites. J Insect Sci. 2010;10(42):1–42.
  • Biggs DR, McGregor PG. Gut pH and amylase and protease activity in larvae of the New Zealand grass grub (Costelytra zealandica; Coleoptera: Scarabaeidae) as a basis for selecting inhibitors. Insect Biochem Mol Biol. 1996;26(1):69–75.
  • Bignell DE. Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J Insect Physiol. 1984;30(2):169–174.
  • Dow JA. pH gradients in lepidopteran midgut. J Exp Biol. 1992;172(1):355–375.
  • Boudko DY, Moroz LL, Harvey WR, et al. Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut. Proc Natl Acad Sci USA. 2001;98(26):15354–15359.
  • Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. Isme J. 2007;1(6):551–565.
  • Johnson KS, Felton GW. Physiological and dietary influences on midgut redox conditions in generalist lepidopteran larvae. J Insect Physiol. 1996;42(3):191–198.
  • Dillon RJ, Webster G, Weightman AJ, et al. Diversity of gut microbiota increases with aging and starvation in the desert locust. Antonie Van Leeuwenhoek. 2010;97(1):69–77.
  • Egert M, Stingl U, Bruun LD, et al. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol. 2005;71(8):4556–4566.
  • Cazemier AE, Verdoes JC, Reubsaet FA, et al. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie Van Leeuwenhoek. 2003;83(2):135–148.
  • Waterhouse DF. Studies on the digestion of wool by insects VII. Some features of digestion in three species of dermestid larvae and a comparison with Tineola larvae. Aust J Biol Sci. 1952;5(4):444–459.
  • Veivers PC, O'Brien RW, Slaytor M. The redox state of the gut of termites. J Insect Physiol. 1980;26(1):75–77.
  • Charnley AK, Hunt J, Dillon RJ. The germ-free culture of desert locusts, Schistocerca gregaria. J Insect Physiol. 1985;31(6):477–485.
  • Santo Domingo JW, Kaufman MG, Klug MJ, et al. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol. 1998;7(6):761–767.
  • Dillon RJ, Vennard CT, Buckling A, et al. Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett. 2005;8(12):1291–1298.
  • Johnson KS, Barbehenn RV. Oxygen levels in the gut lumens of herbivorous insects. J Insect Physiol. 2000;46(6):897–903.
  • Upadhyaya SK, Manandhar A, Mainali H, et al. Isolation and characterization of cellulolytic bacteria from gut of termite. Rentech Symposium Compendium. 2012;1:14–18.
  • Veivers PC, O'Brien RW, Slaytor M. Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J Insect Physiol. 1982;28(11):947–951.
  • Gupta R, Gigras P, Mohapatra H, et al. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38(11):1599–1616.
  • Saravanan D, Prakash AA, Jagadeeshwaran D, et al. Optimization of thermophile Bacillus licheniformis-amylase desizing of cotton fabrics. Indian J Fibre Text Res. 2011;36:253–258.
  • Sindhu R, Binod P, Pandey A. α-Amylases. In: Current developments in biotechnology and bioengineering. Singapore: Elsevier; 2017. p. 3–24.
  • Liu X, Kokare C. Microbial enzymes of use in industry. In: Biotechnology of microbial enzymes. United States: Academic Press; 2017. p. 267–298.
  • Toksoy Öner E. Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Yeast. 2006;23(12):849–856.
  • Van der Maarel MJ, Van der Veen B, Uitdehaag JC, et al. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–155.
  • Dumoulin Y, Cartilier LH, Mateescu MA. Cross-linked amylose tablets containing α-amylase: an enzymatically-controlled drug release system. J Control Release. 1999;60(2–3):161–167.
  • Cairns JRK, Esen A. β-glucosidases. Cell Mol Life Sci. 2010;67(20):3389–3405.
  • Ohmiya K, Sakka K, Karita S, et al. Structure of cellulases and their applications. Biotechnol Genet Eng Rev. 1997;14(1):365–414.
  • Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res. 2011;2011:280696–280610.
  • Jayasekara S, Ratnayake R. Microbial cellulases: an overview and applications. In: Pascual AR, Martin MEE, editors. Cellulose. London: Intechopen; 2019. p. 1–21.
  • Rao MB, Tanksale AM, Ghatge MS, et al. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62(3):597–635.
  • Singh R, Mittal A, Kumar M, et al. Microbial proteases in commercial applications. J Pharm Chem Biol Sci. 2016;4(3):365–374.
  • Razzaq A, Shamsi S, Ali A, et al. Microbial proteases applications. Front Bioeng Biotechnol. 2019;7:1–10.
  • Sanchez OJ, Cardona CA. Biotechnological production of fuel alcohol. I: production from different raw materials. Interciencia. 2005; 30(11):671–720.
  • Morrison M, Pope PB, Denman SE, et al. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol. 2009;20(3):358–363.
  • Prins RA, Kreulen DA. Comparative aspects of plant cell wall digestion in insects. Anim Feed Sci Technol. 1991;32(1–3):101–118.
  • Mathew GM, Mathew DC, Lo SC, et al. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production. Bioresour Technol. 2013;145:337–344.
  • Abraham RE, Puri M. Commercial application of lignocellulose-degrading enzymes in a biorefinery. In: Microbial enzymes: roles and applications in industries. Singapore: Springer; 2020. p. 287–301.
  • Roy L, Chakraborty S, Bera D, et al. Application of metabolic engineering for elimination of undesirable fermentation products during biofuel production from lignocellulosics. In: Genetic and metabolic engineering for improved biofuel production from lignocellulosic biomass. Amsterdam: Elsevier; 2020. p. 63–80.
  • Beg Q, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56(3–4):326–338.
  • Walia A, Guleria S, Mehta P, et al. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 2017;7(1):11–22.
  • Wu XY, JÄÄskelÄinen S, Linko WY. Purification and partial characterization of Rhizomucor miehei lipase for ester synthesis. Appl Biochem Biotechnol. 1996;59(2):145–158.
  • Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol. 2004;64(6):763–781.
  • Javed S, Azeem F, Hussain S, et al. Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol. 2018;132:23–34.
  • Ray A. Application of lipase in industry. Asian J Pharm Technol. 2012;2(2):33–37.
  • Sangeetha R, Arulpandi I, Geetha A. Bacterial lipases as potential industrial biocatalysts: an overview. Research J of Microbiology. 2011;6(1):1–24.
  • Horchani H, Aissa I, Ouertani S, et al. Staphylococcal lipases: biotechnological applications. J Mol Catal B. 2012;76:125–132.
  • Nagarajan S. New tools for exploring “old friends-microbial lipases”. Appl Biochem Biotechnol. 2012;168(5):1163–1196.
  • Yang W, He Y, Xu L, et al. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: identification, characterization and application for biodiesel production. J Mol Catal B. 2016;126:76–89.
  • Nerurkar M, Joshi M, Pariti S, et al. Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. J Surfact Deterg. 2013;16(3):435–443.
  • Benjamin S, Pandey A. Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast. 1998;14(12):1069–1087.
  • Sharma D, Sharma B, Shukla AK. Biotechnological approach of microbial lipase: a review. Biotechnology. 2010;10(1):23–40.
  • Metzger JO, Bornscheuer U. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol. 2006;71(1):13–22.
  • Andualema B, Gessesse A. Microbial lipases and their industrial applications. Biotechnology. 2012;11(3):100–118.
  • Garg G, Singh A, Kaur A, et al. Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech. 2016;6(1):47–59.
  • Kashyap DR, Chandra S, Kaul A, et al. Production, purification and characterization of pectinase from a Bacillus sp. DT7. World J Microbiol Biotechnol. 2000;16(3):277–282.
  • Sharma A, Shrivastava A, Sharma S, et al. Microbial pectinases and their applications. In Biotechnology for Environmental Management and Resource Recovery. India: Springer; 2013. p. 107–124.
  • Panda T, Gowrishankar BS. Production and applications of esterases. Appl Microbiol Biotechnol. 2005;67(2):160–169.
  • Larsen EM, Johnson RJ. Microbial esterases and ester prodrugs: an unlikely marriage for combating antibiotic resistance. Drug Dev Res. 2019;80(1):33–47.
  • Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol. 2006;71(6):773–782.
  • Nisa RM, Irni M, Amaryllis A, et al. Chitinolytic bacteria isolated from chili rhizosphere: chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci Genn.). Am J Agric Biol Sci. 2010;5(4):430–435.
  • Aggarwal C, Paul S, Tripathi V, et al. Chitinase producing Serratia marcescens for biocontrol of Spodoptera litura (Fab) and studies on its chitinolytic activities. Ann Agric Res. 2015;36(36):132–137.
  • Govindarajan RK, Revathi S, Rameshkumar N, et al. Microbial tannase: Current perspectives and biotechnological advances. Biocatal Agric Biotechnol. 2016;6:168–175.
  • Belmares R, Contreras-Esquivel JC, Rodrı́guez-Herrera R, et al. Microbial production of tannase: an enzyme with potential use in food industry. Food Sci Technol. 2004;37(8):857–864.
  • Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, et al. Biotechnological advances and challenges of tannase: an overview. Food Bioprocess Technol. 2012;5(2):445–459.
  • Navarro-Roldán MA, Bosch D, Gemeno C, et al. Enzymatic detoxification strategies for neurotoxic insecticides in adults of three tortricid pests. Bull Entomol Res. 2020;110(1):144–154.
  • Rosenthal GA, Janzen DH. Herbivores: their interactions with secondary plant metabolites: ecological and evolutionary processes. United States: Academic Press; 2012.
  • Blum M. Chemical defenses of arthropods. United States: Elsevier; 2012.
  • Shen SK, Dowd PF. Detoxifying enzymes and insect symbionts. J Chem Educ. 1992;69(10):796.
  • Shen SK, Dowd PF. Detoxification spectrum of the cigarette beetle symbiont Symbiotaphrina kochii in culture. Entomol Expt Appl. 1991;60(1):51–59.
  • Adams AS, Aylward FO, Adams SM, et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol. 2013;79(11):3468–3475.
  • Le Roes-Hill M, Rohland J, Burton S. Actinobacteria isolated from termite guts as a source of novel oxidative enzymes. Antonie Van Leeuwenhoek. 2011;100(4):589–605.
  • Idowu AB, Edema MO, Oyedepo MT. Extracellular enzyme production by microflora from the gut region of the variegated grasshopper Zonocerus variegatus (Orthoptera: Pyrgomorphidae). Int J Trop Insect Sci. 2009;29(04):229–235.
  • Priya NG, Ojha A, Kajla MK, et al. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLOS One. 2012;7(1):e30768.
  • Wang J, Yang M, Song Y, et al. Gut-associated bacteria of Helicoverpa zea indirectly trigger plant defenses in maize. J Chem Ecol. 2018;44(7–8):690–699.
  • Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8(3):218–230.
  • Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet. 2002;3(11):850–861.
  • Wernegreen JJ. For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev. 2005;15(6):572–583.
  • Mitsumori M, Xu L, Kajikawa H, et al. Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett. 2003;219(1):47–52.
  • Douglas AE. Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989;64(4):409–434.
  • Campbell BC. On the role of microbial symbiotes in herbivorous insects. Insect Plant Interact. 1989;1:1–44.
  • Konig H. Diversity and microhabitats of the hindgut flora of termites. Recent Res Dev Microbiol. 2002;6:125–156.
  • Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43(1):17–37.
  • Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–190.
  • Pant NC, Gupta P, Nayar JK. Physiology of intracellular symbiotes of Stegobium paniceum L. with special reference to amino acid requirements of the host. Experientia. 1960;16(7):311–312.
  • Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13(2):223–234.
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211.
  • Sonawane MS, Chaudhary RD, Shouche YS, et al. Insect gut bacteria: a novel source for siderophore production. Proc Natl Acad Sci USA. 2018;88(2):567–572.
  • Wren HN, Cochran DG. Xanthine dehydrogenase activity in the cockroach endosymbiont Blattabacterium cuenoti (Mercier 1906) Hollande and Favre 1931 and in the cockroach fat body. Comp Biochem Physiol Part B. 1987;88(3):1023–1026.
  • Degnan PH, Lazarus AB, Wernegreen JJ. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res. 2005;15(8):1023–1033.
  • Cazemier AE. 1999. (Hemi)cellulose degradation by microorganisms from the intestinal tract of arthropods [doctoral thesis]. Nijmegen: University of Nijmegen.
  • Boyd DW, Cohen AC, Alverson DR. Digestive enzymes and stylet morphology of Deraeocoris nebulosus (Hemiptera: Miridae), a predacious plant bug. Ann Entomol Soc Am. 2002;95(3):395–401.2.0.CO;2]
  • Lee JB, Park KE, Lee SA, et al. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Dev Comp Immunol. 2017;69:12–22.
  • Werren JH. Symbionts provide pesticide detoxification. Proc Natl Acad Sci USA. 2012;109(22):8364–8365.
  • Haine ER. Symbiont-mediated protection. Proc Biol Sci. 2008;275(1633):353–361.
  • Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741–751.
  • Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104(Supplement 1):8627–8633.
  • Ceja-Navarro JA, Vega FE, Karaoz U, et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun. 2015;6:7618.
  • Ramya SL, Venkatesan T, Srinivasa Murthy K, et al. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz J Microbiol. 2016;47(2):327–336.
  • Xia X, Sun B, Gurr GM, et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front Microbiol. 2018;9:25.
  • Przemieniecki SW, Kosewska A, Ciesielski S, et al. Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environ Pollut. 2020;256:113265.
  • Ricci I, Valzano M, Ulissi U, et al. Symbiotic control of mosquito borne disease. Pathog Glob Health. 2012;106(7):380–385.
  • Zhang D, Zheng X, Xi Z, et al. Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLOS One. 2015;10(4):e0121126.
  • Zhang D, Lees RS, Xi Z, et al. Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLOS One. 2015;10(8):e0135194.
  • Gentile JE, Rund SS, Madey GR. Modelling sterile insect technique to control the population of Anopheles gambiae. Malar J. 2015;14(1):92.
  • Pagabeleguem S, Gimonneau G, Seck MT, et al. A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component. PLOS Negl Trop Dis. 2016;10(2):e0004491.
  • Pant NC, Fraenkel G. Studies on the symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium paniceum L. Biol Bull. 1954;107(3):420–432.
  • Bismanis JE. Endosymbionts of Sitodrepa panicea. Can J Microbiol. 1976;22(10):1415–1424.
  • Berasategui A, Shukla S, Salem H, et al. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016;100(4):1567–1577.
  • Kellner RL. Suppression of pederin biosynthesis through antibiotic elimination of endosymbionts in Paederus sabaeus. J Insect Physiol. 2001;47(4–5):475–483.
  • Kellner RL. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem Mol Biol. 2002;32(4):389–395.
  • Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA. 2002;99(22):14002–14007.
  • Fredenhagen A, Tamura SY, Kenny PT, et al. Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J Am Chem Soc. 1987;109(14):4409–4411.
  • Haeder S, Wirth R, Herz H, et al. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA. 2009;106(12):4742–4746.
  • Oh DC, Poulsen M, Currie CR, et al. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol. 2009;5(6):391–393.
  • Barke J, Seipke RF, Grüschow S, et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010;8(1):109.
  • Schoenian I, Spiteller M, Ghaste M, et al. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A. 2011;108(5):1955–1960.
  • Carr G, Derbyshire ER, Caldera E, et al. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J Nat Prod. 2012;75(10):1806–1809.
  • Engel MS. Insect evolution. Curr Biol. 2015;25(19):868–872.
  • Stork NE. How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol. 2018;63:31–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.