1,164
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Insights into organic loading rates of anaerobic digestion for biogas production: a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 487-507 | Received 02 Oct 2020, Accepted 03 Jun 2021, Published online: 27 Jul 2021

References

  • Venkiteshwaran K, Bocher B, Maki J, et al. Relating anaerobic digestion microbial community and process function: supplementary issue: water microbiology. Microbiol Insights. 2015;8s2:MBI.S33593.
  • Franke-Whittle IH, Walter A, Ebner C, et al. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014;34(11):2080–2089.
  • Nkuna R, Roopnarain A, Adeleke R. Effects of organic loading rates on microbial communities and biogas production from water hyacinth: a case of mono- and co-digestion. J Chem Technol Biotechnol. 2019;94(4):1294–1304.
  • Astals S, Batstone DJ, Mata-Alvarez J, et al. Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour Technol. 2014;169:421–427.
  • Lin Y, Wang D, Li Q, et al. Kinetic study of mesophilic anaerobic digestion of pulp & paper sludge. Biomass Bioenergy. 2011;35(12):4862–4867.
  • Zuo Z, Wu S, Zhang W, et al. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresour Technol. 2013;146:556–561.
  • Shah FA, Mahmood Q, Rashid N, et al. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 2015;42:627–642.
  • Rashama C, Ijoma G, Matambo T. Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies. Biomass Conv Bioref. 2019;9(4):803–826.
  • Callaghan FJ, Wase DAJ, Thayanithy K, et al. An examination of the continuous anaerobic co-digestion of cattle slurry and fish offal. Process Saf Environ Prot. 1998;76(3):224–228.
  • Lv W, Schanbacher FL, Yu Z. Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresour Technol. 2010;101(24):9409–9414.
  • Bi SJ, Hong XJ, Wang GX, et al. Effect of domestication on microorganism diversity and anaerobic digestion of food waste. Genet Mol Res. 2016;15:1–14.
  • Neves L, Oliveira R, Alves MM. Co-digestion of cow manure, food waste and intermittent input of fat. Bioresour Technol. 2009;100(6):1957–1962.
  • Liu T, Sun L, Nordberg Å, et al. Substrate-induced response in biogas process performance and microbial community relates back to inoculum source. Microorganisms. 2018;6(3):80.
  • Schmidt T, Ziganshin AM, Nikolausz M, et al. Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors – Performance and methanogenic community composition. Biomass Bioenergy. 2014;69:241–248.
  • Shah FA, Rashid N, Mahmood Q, et al. Effect of pretreatment and substrate ratios in biorefinery employing co-digestion of plant biomass and poultry waste. Front Energy Res. 2019;6:1–14.
  • Costa A, Tangorra FM, Zaninelli M, et al. Evaluating an e-nose ability to detect biogas plant efficiency: a case study. Ital J Anim Sci. 2016;15(1):116–123.
  • Tamkin A, Martin J, Castano J, et al. Impact of organic loading rates on the performance of variable temperature biodigesters. Ecol Eng. 2015;78:87–94.
  • Chen Y, Rößler B, Zielonka S, et al. Effects of organic loading rate on the performance of a pressurized anaerobic filter in two-phase anaerobic digestion. Energies. 2014;7(2):736–750.
  • Menardo S, Gioelli F, Balsari P. The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresour Technol. 2011;102(3):2348–2351.
  • Sun L, Pope PB, Eijsink VGH, et al. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol. 2015;8(5):815–827.
  • Xu R, Yang Z-HH, Zheng Y, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresour Technol. 2018;262:184–193.
  • Ferguson RMW, Coulon F, Villa R. Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res. 2016;100:348–356.
  • Li J, Rui J, Yao M, et al. Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure. Front Microbiol. 2015;6:1–10.
  • Muzaffar AM, Hussain A, Verma C. Design considerations and operational performance of anaerobic digester: a review. Cogent Eng. 2016;3:1–20.
  • Aramrueang N, Rapport J, Zhang R. Effects of hydraulic retention time and organic loading rate on perfomance and stability of anaerobic digestion of Spirulina platensis. Biosyst Eng. 2016;147:174–182.
  • Rao MS, Singh SP. Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield-organic loading relationships for process optimisation . Bioresour Technol. 2004;95(2):173–185.
  • Lossie  , Ulrich  , Petra Pütz  . “Targeted control of biogas plants with the help of FOS/TAC.” Practice Report Hach-Lange; 2008.
  • Rincón B, Borja R, González JM, et al. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J. 2008;40(2):253–261.
  • Mahanta P, Saha UK, Dewan A, et al. Biogas digester: a discussion on factors affecting biogas production and field investigation of a novel duplex digester. J Solar Energy Soc India. 2005;15:1–12.
  • Rabii A, Aldin S, Dahman Y, et al. A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies. 2019;12(6):1106.
  • Hegde S, Trabold TA. Anaerobic digestion of food waste with unconventional co-substrates for stable biogas production at high organic loading rates. Sustain. 2019;11:3875.
  • Krakat N, Anjum R, Dietz D, et al. Methods of ammonia removal in anaerobic digestion: a review. Water Sci Technol. 2017;76(7-8):1925–1938.
  • Naik L, Gebreegziabher Z, Tumwesige V, et al. Factors determining the stability and productivity of small scale anaerobic digesters. Biomass Bioenergy. 2014;70:51–57.
  • Zeshan , Karthikeyan OP, Visvanathan C. Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour Technol. 2012;113:294–302.
  • Hagos K, Zong J, Li D, et al. Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev. 2017;76:1485–1496.
  • Dareioti MA, Kornaros M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol. 2014;167:407–415.
  • Dereli RK, Ersahin ME, Ozgun H, et al. Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresour Technol. 2012;122:160–170.
  • Ketheesan B, Stuckey DC. Effects of hydraulic/organic shock/transient loads in anaerobic wastewater treatment: a review. Crit Rev Environ Sci Technol. 2015;45(24):2693–2727.
  • Lukitawesa , Patinvoh RJ, Millati R, et al. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered. 2020;11:39–52.
  • Izumi K, Okishio Y. k, Nagao N, et al. Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad. 2010;64(7):601–608.
  • Angelidaki I, Sanders W. Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol. 2004;3(2):117–129.
  • Zhou J, Yang J, Yu Q, et al. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: a pilot study. Bioresour Technol. 2017;244(Pt 1):865–871.
  • Eslami H, Hashemi H, Fallahzadeh RA, et al. Effect of organic loading rates on biogas production and anaerobic biodegradation of composting leachate in the anaerobic series bioreactors. Ecol Eng. 2018;110:165–171.
  • Mahanta P, Saha UK, Dewan A, et al. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol. 2013;102:5353–5360.
  • Babaee A, Shayegan J. Effect of organic loading rates (olr) on production of methane from anaerobic digestion of vegetables waste. Proc World Renew Energy Congr – Sweden, 8–13 May, 2011, Linköping, Sweden. 2011. 57:411–417.
  • Wijekoon KC, Visvanathan C, Abeynayaka A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology. 2011;102:5353–5360.
  • Kalia AK, Kanwar SS. Long-term evaluation of a fixed dome Janata biogas plant in hilly conditions. Bioresour Technol. 1998;65(1-2):61–63.
  • Ghorbanian M, Lupitskyy RM, Satyavolu JV, et al. Impact of hydraulic retention time at constant organic loading rate in a two-stage expanded granular sludge bed reactor. Environ Eng Sci. 2014;31(6):317–323.
  • Kleerebezem R, Joosse B, Rozendal R, et al. Anaerobic digestion without biogas? Rev Environ Sci Biotechnol. 2015;14(4):787–801.
  • Lema JM, Ibanez E, Canals J. Anaerobic treatment of landfill leachates: kinetics and stoichiometry. Environ Technol Lett. 1987;8(1-12):555–564.
  • Charles W, Carnaje NP, Cord-Ruwisch R. Methane conversion efficiency as a simple control parameter for an anaerobic digester at high loading rates. Water Sci Technol. 2011;64(2):534–539.
  • Morken J, Gjetmundsen M, Fjortoft K. Determination of kinetic constants from codigestion of dairy cow slurry and municipal food waste at an increasing organic loading rate. Renew Energy. 2018;117:46–51.
  • Mähnert P, Linke B. Kinetic study of biogas production from energy crops and animal waste slurry: effect of organic loading rate and reactor size. Environ Technol. 2009;30(1):93–99.
  • Ebrahimi A, Hashemi H, Eslami H, et al. Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor. J Environ Manage. 2018;206:707–714.
  • Calusinska M, Goux X, Fossépré M, et al. A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnol Biofuels. 2018;11(1):1–19.
  • Pagilla KR, Subramanian B. Wastewater treatment anaerobic digester foaming prevention and control methods: literature review and survey. Water Environment Research Foundation. 2014.
  • Provenzano MR, Cavallo O, Malerba AD, et al. Unravelling (maize silage) digestate features throughout a full-scale plant: a spectroscopic and thermal approach. J Clean Prod. 2018;193:372–378.
  • Jobling Purser BJ, Thai SM, Fritz T, et al. An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste. Water Res. 2014;61:162–170.
  • Mézes L, Tamas J, Borbely J. Novel approach of the basis of FOS/TAC method. International Symposia “Risk Factors for Environment and Food Safety” & “Natural Resources and Sustainable Development” & “50 Years of Agriculture Researche in Oradea”, Faculty of Environmental Protection. 2011;803–807.
  • Wan C, Zhou Q, Fu G, et al. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag. 2011;31(8):1752–1758.
  • Allen E, Wall DM, Herrmann C, et al. Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresour Technol. 2014;170:436–444.
  • Pistis A, Asquer C, Scano EA. Anaerobic digestion of potato industry by-products on a pilot-scale plant under thermophilic conditions extended abstract. Environ Eng Manag J. 2013;12:93–96.
  • Kim SH, Kafle GK. Effective treatment of swine manure with Chinese cabbage silage through two serial anaerobic digestion. J Biosyst Eng. 2010;35(1):53–63.
  • Di Maria F, Sordi A, Cirulli G, et al. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Manag. 2014;34(9):1603–1608.
  • Chuenchart W, Logan M, Leelayouthayotin C, et al. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass and Bioenergy. 2020;136:105541.
  • Rajagopal R, Massé DI, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol. 2013;143:632–641.
  • Sun M-T, Fan X-L, Zhao X-X, et al. Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure. Bioresour Technol. 2017;235:292–300.
  • Park JG, Lee B, Jo SY, et al. Control of accumulated volatile fatty acids by recycling nitrified effluent. J Environ Health Sci Eng. 2018;16(1):19–25.
  • Wang Y, Zhang Y, Wang J, et al. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy. 2009;33(5):848–853.
  • Banks CJ, Zhang Y, Jiang Y, et al. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol. 2012;104:127–135.
  • Ghasimi SMD, Idris A, Chuah TG, et al. Semi-continuous anaerobic treatment of fresh leachate from municipal solid waste transfer station. African J Biotechnol. 2009;8:2763–2773.
  • Moestedt J, Nordell E, Shakeri Yekta S, et al. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manag. 2016;47(Pt A):11–20.
  • Yang L, Huang Y, Zhao M, et al. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int Biodeterior Biodegradation. 2015;105:153–159.
  • Čater M, Fanedl L, Malovrh Š, et al. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresour Technol. 2015;186:261–269.
  • Town JR, Dumonceaux TJ. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Appl Microbiol Biotechnol. 2016;100(2):1009–1017.
  • Zhang W, Xing W, Li R. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. Bioresour Technol. 2018;265:82–92.
  • Yoshida M, Liu Y, Uchida S, et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem. 2008;72(3):805–810.
  • Kim IS, Hwang MH, Jang NJ, et al. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int J Hydrogen Energy. 2004;29:1133–1140.
  • Zhang L, Jahng D. Enhanced anaerobic digestion of piggery wastewater by ammonia stripping: effects of alkali types. J Hazard Mater. 2010;182(1-3):536–543.
  • Mouneimne AH, Carrère H, Bernet N, et al. Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresour Technol. 2003;90(1):89–94.
  • Li R, Chen S, Li X. Anaerobic co-digestion of kitchen waste and cattle manure for methane production. Energy Sources, Part A Recover Util Environ Eff. 2009;31(20):1848–1856.
  • Molaey R, Bayrakdar A, Sürmeli RÖ, et al. Anaerobic digestion of chicken manure: mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy. 2018;108:439–446.
  • Schauer-Gimenez AE, Zitomer DH, Maki JS, et al. Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res. 2010;44(12):3555–3564.
  • Tale VP, Maki JS, Zitomer DH. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Water Res. 2015;70:138–147.
  • Li Y, Yang G, Li L, et al. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment. Waste Manag. 2018;79:744–751.
  • Lewis PR, Hinshelwood CN. Adjustments in bacterial reaction systems. II. Adaptive mechanisms. Proc R Soc London Ser B - Biol Sci. 1948;135:316–322.
  • Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3(1):371–394.
  • Guiot SR, Podruzny MF, McLean DD. Assessment of macroenergetic parameters for an anaerobic upflow biomass bed and filter (UBF) reactor. Biotechnol Bioeng. 1989;34(10):1277–1288.
  • Maleki E, Bokhary A, Liao BQ. A review of anaerobic digestion bio-kinetics. Rev Environ Sci Biotechnol. 2018;17(4):691–705.
  • Pramanik SK, Suja FB, Porhemmat M, et al. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes. 2019;7(9):600.
  • Aworanti OA, Agary SE, Ogunleye OO. Biomethanisation of cattle manure, pig manure and poutry manure mixture in co-digestion with waste of pineapple fruit and content of chicken-gizzard Part 1: kinetic and thermodynamic modelling studies. Open Biotechnol J. 2017;11:3–6.
  • Ugwu SN, Enweremadu CC. Biodegradability and kinetic studies on biomethane production from okra (Abelmoschus esculentus) waste. S Afr J Sci. 2019;115:1–5.
  • Deepika S, Chamundeeswari J. Influence of organic loading rate and hydraulic retention time on the efficiency of a huasb bioreactor treating vegetable waste. Int J Appl Eng Res. 2014;9:5593–5597.
  • Xu R, Zhang K, Liu P, et al. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour Technol. 2018;247:1119–1127.
  • Maragkaki AE, Fountoulakis M, Kyriakou A, et al. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag. 2016;71:605–611.
  • Edwiges T, Frare L, Mayer B, et al. Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 2018;71:618–625.
  • Zhou H, Löffler D, Kranert M. Model-based predictions of anaerobic digestion of agricultural substrates for biogas production. Bioresour Technol. 2011;102(23):10819–10828.
  • Abdeshahian P, Lim JS, Ho WS, et al. Potential of biogas production from farm animal waste in Malaysia. Renew Sustain Energy Rev. 2016;60:714–723.
  • Al-Masri M. Changes in biogas production due to different ratios of some animal and agricultural wastes. Bioresour Technol. 2001;77(1):97–100.
  • Zhang Z, Zhang G, Li W, et al. Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int J Hydrogen Energy. 2016;41(21):9153–9158.
  • Zhao Y, Sun F, Yu J, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: stimulative and inhibitory effects on fermentation. Bioresour Technol. 2018;269:143–152.
  • Qiang H, Wang F, Ding J, et al. Co-digestion of swine manure and corn stalks with biochar as an effective promoter: an optimization study using response surface methodology. Fuel. 2020;268:117395.
  • He J, Wang X, Yin X. b, et al. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates. AMB Expr. 2018;8(1):92.
  • Ma J, Zhao Q-B, Laurens LLM, et al. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels. 2015;8(1):141.
  • Gonzalez A, Hendriks ATWM, van Lier JB, et al. Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step. Biotechnol Adv. 2018;36(5):1434–1469.
  • Ma J, Frear C, Wang Z, et al. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol. 2013;134:391–395.
  • Labatut RA, Angenent LT, Scott NR. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol. 2011;102(3):2255–2264.
  • Mulat DG, Dibdiakova J, Horn SJ. Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. Biotechnol Biofuels. 2018;11(1):61.
  • Ulises Hernández-Beltrán J, Omar Hernández-De Lira I, María Cruz-Santos M, et al. Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci. 2019;9(18):3721.
  • Szwarc D, Szwarc K. Use of a pulsed electric field to improve the biogas potential of maize silage. Energies. 2020;14(1):119.
  • Wang L, Shen F, Yuan H, et al. Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Manag. 2014;34(12):2627–2633.
  • Aslanzadeh S, Rajendran K, Taherzadeh MJ. A comparative study between single- and two-stage anaerobic digestion processes: Effects of organic loading rate and hydraulic retention time. Int Biodeterior Biodegradation. 2014;95:181–188.
  • Kaparaju P, Ellegaard L, Angelidaki I. Optimisation of biogas production from manure through serial digestion: lab-scale and pilot-scale studies. Bioresour Technol. 2009;100(2):701–709.
  • Abubakar BSUI, Ismail N. Anaerobic digestion of cow dung for biogas production. ARPN J Eng Appl Sci. 2012;7:169–172.
  • Jabeen M, Zeshan Yousaf S, et al. High-solids anaerobic co-digestion of food waste and rice husk at different organic loading rates. Int Biodeterior Biodegrad. 2015;102:149–153.
  • Esposito G, Frunzo L, Giordano A, et al. Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol. 2012;11(4):325–341.,
  • Tanimu MI, Ghazi TIM, Harun RM, et al. Effect of carbon to nitrogen ratio of food waste on biogas methane production in a batch mesophilic anaerobic digester. Int J Innov Manag Technol. 2014;5:5–8.
  • Igoni AH, Ayotamuno MJ, Eze CL, et al. Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy. 2008;85(6):430–438.
  • Thorin E, Olsson J, Schwede S, et al. Biogas from co-digestion of sewage sludge and microalgae. Energy Procedia. 2017;105:1037–1042.
  • Samson R, LeDuy A. Improved performance of anaerobic digestion of spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett. 1983;5(10):677–682.
  • Zhou J, Yang J, Yu Q, et al. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study. Bioresource Technology. 2017;244:865–871.
  • Li D, Liu S, Mi L, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour Technol. 2015;187:120–127.
  • Carballa M, Regueiro L, Lema JM. Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol. 2015;33:103–111.
  • Kundu K, Sharma S, Sreekrishnan TRR. Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature. Bioresour Technol. 2013;129:538–547.
  • Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34(6):755–781.
  • Regueiro L, Lema JM, Carballa M. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour Technol. 2015;197:208–216.
  • Chen H, Wei Y, Liang P, et al. Performance and microbial community variations of a upflow anaerobic sludge blanket (UASB) reactor for treating monosodium glutamate wastewater: effects of organic loading rate. J Environ Manage. 2020;253:109691.
  • Gou C, Yang Z, Huang J, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere. 2014;105:146–151.
  • Stafford DA. The effects of mixing and volatile fatty acid concentrations on anaerobic digester performance. Biomass. 1982;2(1):43–55.
  • Jiang Y, Dennehy C, Lawlor PG, et al. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Waste Manag. 2018;79:302–311.
  • Xu Z, Zhao M, Miao H, et al. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour Technol. 2014;163:186–192.
  • Lins P, Illmer P. Effects of volatile fatty acids, ammonium and agitation on thermophilic methane production from biogas plant sludge in lab-scale experiments. Folia Microbiol (Praha). 2012;57(4):313–316.
  • Mahdy A, Bi S, Song Y, et al. Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. Bioresour Technol Reports. 2020;9:100359.
  • Mladenovska Z, Dabrowski S, Ahring BK. Anaerobic digestion of manure and mixture of manure with lipids: biogas reactor performance and microbial community analysis. Water Sci Technol. 2003;48(6):271–278.
  • Schmidt JE, Mladenovska Z, Lange M, et al. Acetate conversion in anaerobic biogas reactors: traditional and molecular tools for studying this important group of anaerobic microorganisms. Biodegradation. 2000;11(6):359–364.
  • Mcinerney MJ, Bryant MP, Hespell RB, et al. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol. 1981;41(4):1029–1039.
  • Liu C, Wachemo AC, Tong H, et al. Biogas production and microbial community properties during anaerobic di- gestion of corn stover at different temperatures. Bioresour Technol. 2017;261:93–103.
  • Guo X, Wang C, Sun F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol. 2014;152:420–428.
  • Sibiya NT, Muzenda E, Tesfagiorgis HB, et al. Effect of temperature and pH on the anaerobic digestion of grass silage. In: 6th Int'l Conf. on green technology, renewable energy & environmental engg. (ICGTREEE'2014), Cape Town (SA) 2014. p. 6–9.
  • Tan L, Nishimura H, Wang Y-F, et al. Effect of organic loading rate on thermophilic methane fermentation of stillage eluted from ethanol fermentation of waste paper and kitchen waste. J Biosci Bioeng. 2019;127(5):582–588.
  • Gebreeyessus GD, Jenicek P. Thermophilic versus mesophilic anaerobic digestion of sewage sludge: a comparative review. Bioengineering. 2016;3(2):15–14.
  • Zhang L, Loh K-C, Sarvanantharajah S, et al. Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresour Technol. 2019;288:121597.
  • Wu L, Yang Y, Chen S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10.
  • Wang X, Zheng Q, Yuan Y, et al. Bacterial community and molecular ecological network in response to Cr2O3 nanoparticles in activated sludge system. Chemosphere. 2017;188:10–17.
  • Mutungwazi A, Mukumba P, Makaka G. Biogas digester types installed in South Africa: a review. Renew Sustain Energy Rev. 2018;81:172–180.
  • Hamilton DW. Anaerobic digestion of animal manures: types of digesters. Oklahoma Coop Ext Serv. 2014;1–4.
  • Wellinger A. Process design of agricultural digesters. Nova Energie GmbH Elggerstrasse, Report, 1999.
  • Abbasi T, Tauseef S, Abbasi S. Anaerobic digestion for global warming control and energy generation - An overview. Renew Sustain Energy Rev. 2012;16(5):3228–3242.
  • Ngan VC, Hieu T, Nam H, et al. Review on the most popular anaerobic digester models in the Mekong Delta. J Viet Env. 2012;2:8–19.
  • Qian MY, Li RH, Li J, et al. Industrial scale garage-type dry fermentation of municipal solid waste to biogas. Bioresour Technol. 2016;217:82–89.
  • Hasangika WAS, Jaanuvi S, Karunathilake HP, et al. Potential of plug flow digesters for biogas production in the Sri Lankan domestic context. MERCon 2015 Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka. 2015. p. 188–193.
  • Kougias PG, Angelidaki I. Biogas and its opportunities — A review Keywords. Front Environ Sci. 2018;12:1–22.
  • Nges IA, Liu J. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renew Energy. 2010;35(10):2200–2206.
  • Borja R, Rincón B, Sánchez E, et al. Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manag. 2008;28(5):870–877.
  • Kigozi R, Aboyade AO, Muzenda E. Sizing of an anaerobic biodigester for the organic fraction of municipal solid waste. In: The World Congress on Engineering 2014. San Francisco California, USAAt: San Francisco California, USA. 2014. p. 659–663.
  • Hickey RF, Wu WM, Veiga MC, et al. Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Sci Technol. 1991;24(8):207–255.
  • Britz TJ, Merwe MVD. Anaerobic treatment of baker's yeast effluent using a hybrid digester with polyurethane as support material. Biotechnol Lett. 1993;15(7):755–760.
  • Senturk E, Ince M, Engin OnkalG. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater. Journal of Harzadous Materials. 2010;176:843–848.
  • Senturk E, Ince M, Engin OG. Kinetic evaluation and perfomance of a mesophilic anaerobic contact reactor treating medium strength food processing wastewater. Bioresour Technol. 2010;101:3970–3977.
  • Yousefi Z, Behbodi M, Ali Mohammadpour R. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and anaerobic filter: study of OLR and HRT optimization in ABR/AF reactors. Environ Health Eng Manag. 2018;5(3):137–142.
  • Stamatelatou K, Vavilin V, Lyberatos G. Perfomance of a glucose fed periodic anaerobic baffled reactor under increasing organic loading conditions: 1. Experimental results. Bioresour Technol. 2003;88(2):131–136.
  • Tang Y-Q, Fujimura Y, Shigematsu T, et al. Anaerobic treatment perfomance and microbial population of thermophilic upflow anaerobic filter reactor treating Awamori distillery wastewater. J Biosci Bioeng. 2007;4:281–287.
  • Kennedy K, van den Berg L. Stability and perfomance of anaerobic Fixed Film Reactor during hydraulic overloading at 10-35oC. Water Res. 1982;16(9):1391–1398.
  • Rintala JA, Lepisto SS. Anaerobic treatment of thermomechanical pulping whitewater at 35-70oC. Water Res. 1992;26(10):1297–1305.
  • Jeris JS. Industrial wastewater treatment using anaerobic fluidised bed reactors. Water Sci Technol. 1983;15(8-9):169–176.
  • Mathiot S, Escoffier Y, Ehlinger F, et al. Control parameter variations in ana anaerobic fluidised bed reactor subjected to organic shockloads. Water Sci Technol. 1992;25(7):93–101.
  • Zheng MX, Wang KJ, Zuo JE, et al. Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresour Technol. 2012; 107:33–40.
  • Driessen W, Yspeert P. Anaerobic treatment of low, medium and high strength effluent in the agro-industry. Water Sci Technol. 1999;40(8):221–228.
  • Angenent LT, Sung S. Development of anaerobic migrating blanket reactor (AMBR), A novel anaerobic treatment system. Water Sci Technol. 2001;35:1739–1747.
  • Lens PNL, Van Den Bosch MC, Hulshoff Pol LW, et al. Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Water Res. 1998;32(4):1178–1192.
  • Onodera T, Sase S, Choeisai P, et al. Evaluation of process performance and sludge properties of an up-flow staged sludge blanket (USSB) reactor for treatment of molasses wastewater. Int J Environ Res. 2012;6:1015–1024.
  • van Lier JB, Boersma F, Debets MMW, et al. High rate thermophilic anaerobic wastewater treatment in compartmentalised upflow reactors. Water Sci Technol. 1994;30(12):251–261.
  • Liu T. Anaerobic digestion of solid substrances in an innovative two-phase plug-flow reactor (TPPFR) and a conventional single-phase continuously stirred-tank reactor. Water Sci Technol. 1998;38(8-9):453–461.
  • Baloch M, Akunna J, Collier P. The performance of a phase separated granular bed bioreactor treating brewery wastewater. Bioresour Technol. 2007;98(9):1849–1855.
  • Borja R, Banks CJ, Wang Z. Performance of a hybrid anaerobic reactor, combining a sludge blanket and a filter, treating slaughterhouse wastewater. Appl Microbiol Biotechnol. 1995;43(2):351–357.
  • Guiot S, van den Berg L. Perfomance and biomass retention of an upflow anaerobic reactor combining a sludge blanket and a filter. Biotechnol Lett. 1984;6(3):161–164.
  • Acharya BK, Mohana S, Madamwar D. Anaerobic treatment of distillery spent wash – A study on upflow anaerobic fixed film bioreactor. Bioresour Technol. 2008;99(11):4621–4626.
  • Nasr N, Elbeshbishy E, Hafez H, et al. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol. 2012;111:122–126.
  • Beccari M, Bonemazzi F, Majone M, et al. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res. 1996;30(1):183–189.
  • Mohan S, Bindhu BK. Effect of phase separation on anaerobic digestion of kitchen waste. J Environ Eng Sci. 2008;7(2):91–103.
  • Neves L, Ferreira R, Oliveira R, et al. Influence of innoculum acclimation in the biodegradation rate and estimated biodegradbility of cow manure, food waste and oil. Environ Eng Manag J. 2010;9(3):327–334.
  • Singh R, Mandal SK, Jain VK. Development of mixed inoculum for methane enriched biogas production. Indian J Microbiol. 2010;50(Suppl 1):26–33.
  • Kerčmar J, Pintar A. Support material dictates the attached biomass characteristics during the immobilization process in anaerobic continuous-flow packed-bed bioreactor. Anaerobe. 2017;48:194–202.
  • Ghangrekar MM, Asolekar SR, Joshi SG. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Res. 2005;39(6):1123–1133.
  • Ma X, Jiang T, Chang J, et al. Effect of substrate to inoculum ratio on biogas production and microbial community during hemi-solid-state batch anaerobic co-digestion of rape straw and dairy manure. Appl Biochem Biotechnol. 2019;189(3):884–902.
  • Kuan-Yeow S, Ying W, Shiu-Feng F, et al. Accelerated startup and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res. 2004;38:2293–2304.
  • Zhou W, Imai T, Ukita M, et al. Triggering forces for anaerobic granulation in UASB reactors. Process Biochem. 2006;41(1):36–43.
  • Yeshanew MM, Frunzo L, Luongo V, et al. Start-up of an anaerobic fluidized bed reactor treating synthetic carbohydrate rich wastewater. J Environ Manage. 2016;184(Pt 2):456–464.
  • Yu HQ, Fang HHP, Tay JH. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere. 2001;44(1):31–36.
  • Stamatelatou K, Kopsahelis A, Blika PS, et al. Anaerobic digestion of olive mill wastewater in a periodic anaerobic baffled reactor (PABR) followed by further effluent purification via membrane separation technologies. J Chem Technol Biotechnol. 2009;84(6):909–917.
  • Wanqin Z, Qianqian L, Zhendong P, et al. Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: effect of reduction of the hydraulic retention time at a constant organic loading rate . Waste Manag. 2017;64:340–347.
  • Park JH, Kumar G, Yun YM, et al. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste. Bioresour Technol. 2018;248(Pt A):134–140.
  • Bodkhe S. Development of an improved anaerobic filter for municipal wastewater treatment. Bioresour Technol. 2008;99(1):222–226.
  • Romain C, Renaud E, Hélène C, et al. Influence of hydrodynamic conditions on the start-up of methanogenic inverse turbulent bed reactors. Water Res. 2007;41:603–612.
  • Lebiocka M, Montusiewicz A, Cydzik-Kwiatkowska A. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge. Int J Environ Res Public Health. 2018;15(8):1717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.