1,163
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

The hidden treasures of citrus: finding Huanglongbing cure where it was lost

, , , , , , , , & show all
Pages 634-649 | Received 24 Feb 2021, Accepted 03 Jun 2021, Published online: 30 Jul 2021

References

  • Trivedi P, Leach JE, Tringe SG, et al. Plant-microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–621.
  • Pinski A, Betekhtin A, Hupert-Kocurek K, et al. Defining the genetic basis of plant–endophytic bacteria interactions. Int J Mol Sci. 2019;20(8):1947.
  • Nataraja KN, Suryanarayanan T, Shaanker RU, et al. Plant–microbe interaction: prospects for crop improvement and management. Plant Physiol Rep. 2019;24(4):461–462.
  • Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):1–10.
  • Dalal JM, Kulkarni NS, Bodhankar MG. Utilization of indigenous endophytic microbes for induction of systemic resistance (ISR) in soybean (Glycine Max (L) Merril) against challenge inoculation with F. oxysporum. Res Biotechnol. 2015;6(1):01–04.
  • Haque MA, Yun HD, Cho KM. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens. J Microbiol. 2016;54(5):353–363.
  • Bamisile BS, Senyo Akutse K, Dash CK, et al. Effects of seedling age on colonization patterns of Citrus limon plants by endophytic Beauveria bassiana and Metarhizium anisopliae and their influence on seedlings growth. J Fungi. 2020;6(1):29.
  • Munir S, He P, Wu Y, et al. Huanglongbing control: perhaps the end of the beginning. Microb Ecol. 2018;76(1):192–204.
  • Zhou C. The status of citrus Huanglongbing in China. Trop Plant Pathol. 2020;45(3):279–276.
  • da Graça JV, Douhan GW, Halbert SE, et al. Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. J Integr Plant Biol. 2016;58(4):373–387.
  • Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006;88:7–37.
  • Andrade M, Li J, Wang N. Candidatus Liberibacter asiaticus: virulence traits and control strategies. Trop Plant Pathol. 2020;45(3):285–213.
  • Ajene IJ, Khamis F, van Asch B, et al. Habitat suitability and distribution potential of Liberibacter species (“Candidatus Liberibacter asiaticus” and “Candidatus Liberibacter africanus”) associated with citrus greening disease. Divers Distrib. 2020;26(5):575–588.
  • Wang N, Pierson EA, Setubal JC, et al. The candidatus liberibacter-host interface: insights into pathogenesis mechanisms and disease control. Annu Rev Phytopathol. 2017;55:451–482.
  • Tansey JA, Vanaclocha P, Monzo C, et al. Costs and benefits of insecticide and foliar nutrient applications to Huanglongbing-infected citrus trees. Pest Manag Sci. 2017;73(5):904–916.
  • Ghatrehsamani S, Abdulridha J, Balafoutis A, et al. Development and evaluation of a mobile thermotherapy technology for in-field treatment of Huanglongbing (HLB) affected trees. Biosyst Eng. 2019;182:1–15.
  • Hu J, Jiang J, Wang N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology. 2018;108(2):186–195.
  • Boina DR, Bloomquist JR. Chemical control of the Asian citrus psyllid and of Huanglongbing disease in citrus. Pest Manag Sci. 2015;71(6):808–823
  • Blaustein RA, Lorca GL, Teplitski M. Challenges for managing Candidatus Liberibacter spp. (Huanglongbing disease pathogen): current control measures and future directions. Phytopathology. 2018;108(4):424–435.
  • White JF, Kingsley KL, Zhang Q, et al. Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci. 2019;75(10):2558–2565.
  • Rao HY, Mohana NC, Satish S. Biocommercial aspects of microbial endophytes for sustainable agriculture. Microbial endophytes. Amsterdam, Netherlands: Elsevier; 2020. p. 323–347.
  • White JF, Kingsley KL, Butterworth S, et al. Seed-vectored microbes: their roles in improving seedling fitness and competitor plant suppression. Seed endophytes: biology and biotechnology. Berlin, Germany: Springer; 2019. p. 3–20.
  • Singh BK, Trivedi P, Egidi E, et al. Crop microbiome and sustainable agriculture. Nat Rev Microbiol. 2020;18(11):601–602.
  • Ginnan NA, Dang T, Bodaghi S, et al. Disease-induced microbial shifts in citrus indicate microbiome-derived responses to Huanglongbing across the disease severity spectrum. Phytobiom J. 2020;4(4):375–387.
  • De Silva NI, Brooks S, Lumyong S, et al. Use of endophytes as biocontrol agents. Fungal Biol Rev. 2019;33(2):133–148.
  • Vurukonda SSKP, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci. 2018;19(4):952.
  • Liu H, Brettell LE, Qiu Z, et al. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 2020;25(8):733–743.
  • Ahmed A, Munir S, He P, et al. Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res. 2020; 241:126565.
  • Morita T, Tanaka I, Ryuda N, et al. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon. 2019;5(6):e01817.
  • Bodhankar S, Grover M, Hemanth S, et al. Maize seed endophytic bacteria: dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech. 2017;7(4):232.
  • Swarnalakshmi K, Senthilkumar M, Ramakrishnan B. Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. Plant growth promoting actinobacteria. Berlin, Germany: Springer; 2016. p. 123–145.
  • Wicaksono WA, Jones EE, Casonato S, et al. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Control. 2018;116:103–112.
  • Blumenstein K, Albrectsen BR, Martín JA, et al. Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl. 2015;60(5):655–667.
  • Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18(3):152–163.
  • Kandel SL, Firrincieli A, Joubert PM, et al. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front Microbiol. 2017;8:386.
  • Law JW-F, Ser H-L, Khan TM, et al. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8:3.
  • Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the message, not the messenger-combating pathogenic virulence in plants by inhibiting quorum sensing mediated signaling molecules. Front Plant Sci. 2017;8:556.
  • Berde CV, Salvi SP, Rawool PP, et al. Role of medicinal plants and endophytic bacteria of medicinal plants in inhibition of biofilm formation: interference in quorum sensing. Implication of quorum sensing and biofilm formation in medicine, agriculture and food industry. Berlin, Germany: Springer; 2019. p. 177–188.
  • Killiny N. Quorum sensing controls Candidatus Liberibacter asiaticus interactions with host plant and insect vector. APS Annual Meeting. 2015. p. 699.
  • Griffin MR. Biocontrol and bioremediation: two areas of endophytic research which hold great promise. Advances in endophytic research. Berlin, Germany: Springer; 2014. p. 257–282.
  • Latha P, Karthikeyan M, Rajeswari E. Endophytic bacteria: prospects and applications for the plant disease management. Plant health under biotic stress. Berlin, Germany: Springer; 2019. p. 1–50.
  • Liu H, Li J, Carvalhais LC, et al. Evidence for the plant recruitment of beneficial microbes to suppress soil‐borne pathogens. New Phytol. 2020;229:2873–2885.
  • Conrath U, Beckers GJ, Langenbach CJ, et al. Priming for enhanced defense. Annu Rev Phytopathol. 2015;53:97–119.
  • Fadiji AE, Babalola OO. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol. 2020;8:467.
  • Fouda A, Hassan SED, Eid AM, et al. The interaction between plants and bacterial endophytes under salinity stress. Endophytes and secondary metabolites. Berlin, Germany: Springer; 2019. p. 591–607.
  • Sahu PK, Singh S, Gupta AR, et al. Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biol Control. 2020;150:104353.
  • Mishra A, Singh SP, Mahfooz S, et al. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Appl Environ Microbiol. 2018;84(8):e02845–17.
  • Banerjee A, Bareh DA, Joshi S. Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. J Soil Sci Plant Nutr. 2017;17:0–140.
  • Munir S, Li Y, He P, et al. Core endophyte communities of different citrus varieties from citrus growing regions in China. Sci Rep. 2020;10(1):1–12.
  • Qiu Z, Egidi E, Liu H, et al. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv. 2019;37(6):107371.
  • Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112(8):E911–E920.
  • Liu H, Brettell LE. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 2019;24(3):187–189.
  • Delaux P-M, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science. 2021;371(6531):eaba6605.
  • Romero FM, Rossi FR, Gárriz A, et al. A bacterial endophyte from apoplast fluids protects canola plants from different phytopathogens via antibiosis and induction of host resistance. Phytopathology. 2019;109(3):375–383.
  • Liu H, Carvalhais LC, Crawford M, et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol. 2017;8:2552.
  • Asghari S, Harighi B, Ashengroph M, et al. Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol. 2020;69(5):827–837.
  • Upreti R, Thomas P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol. 2015;6:255.
  • Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, et al. Indigenous Pseudomonas spp. strains from the olive (Olea europaea L.) rhizosphere as effective biocontrol agents against Verticillium dahliae: from the host roots to the bacterial genomes. Front Microbiol. 2018;9:277.
  • Martínez-García PM, Ruano-Rosa D, Schilirò E, et al. Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci. 2015;10(1):10.
  • Schilirò E, Ferrara M, Nigro F, et al. Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7. PLOS One. 2012;7(11):e48646.
  • Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol. 2014;5:427.
  • Cabanás CGL, Sesmero R, Valverde-Corredor A, et al. A split-root system to assess biocontrol effectiveness and defense-related genetic responses in above-ground tissues during the tripartite interaction Verticillium dahliae-olive-Pseudomonas fluorescens PICF7 in roots. Plant Soil. 2017;417(1–2):433–452.
  • Mitter B, Pfaffenbichler N, Sessitsch A. Plant-microbe partnerships in 2020. Microb Biotechnol. 2016;9(5):635–640.
  • Mukherjee A, Singh B, Verma JP. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res. 2020;237:126469.
  • Mohd Taha MD, Mohd Jaini MF, Saidi NB, et al. Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLOS One. 2019;14(12):e0224431.
  • Lacava PT, Li W, Araújo WL, et al. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol. 2007;45(5):388–393.
  • Gai CS, Lacava PT, Quecine MC, et al. Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol. 2009;47(4):448–454.
  • Rabbee MF, Ali M, Baek KH. Endophyte Bacillus velezensis isolated from citrus spp. Controls streptomycin-resistant Xanthomonas citri subsp. citri that causes citrus bacterial canker. Agronomy. 2019;9(8):470.
  • Li P, Xu J, Wang Z, et al. Phyllosphere microbiome in response to citrus melanose. Research Square. 2020; doi: https://doi.org/10.21203/rs.3.rs-51076/v1.
  • Bai Y, Wang J, Jin L, et al. Deciphering bacterial community variation during soil and leaf treatments with biologicals and biofertilizers to control huanglongbing in citrus trees. J Phytopathol. 2019;167(11–12):686–694.
  • Yang F, Zhang J, Zhang H, et al. Bacterial blight induced shifts in endophytic microbiome of rice leaves and the enrichment of specific bacterial strains with pathogen antagonism. Front Plant Sci. 2020;11:963.
  • Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–838.
  • Zhang Y, Xu J, Riera N, et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome. 2017;5(1):1–17.
  • Postel S, Kemmerling B, editors. Plant systems for recognition of pathogen-associated molecular patterns. Seminars in cell & developmental biology. Amsterdam, Netherlands: Elsevier; 2009.
  • Kourelis J, Van Der Hoorn RA. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell. 2018;30(2):285–299.
  • Yu Q, Chen C, Du D, et al. Reprogramming of a defense signaling pathway in rough lemon and sweet orange is a critical element of the early response to ‘Candidatus Liberibacter asiaticus’. Hortic Res. 2017;4:17063.
  • Balan B, Ibáñez AM, Dandekar AM, et al. Identifying host molecular features strongly linked with responses to huanglongbing disease in citrus leaves. Front Plant Sci. 2018;9:277.
  • Yadav V, Wang Z, Wei C, et al. Phenylpropanoid pathway engineering: an emerging approach towards plant defense. Pathogens. 2020;9(4):312.
  • Martinelli F, Reagan RL, Dolan D, et al. Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC Plant Biol. 2016;16(1):1–14.
  • Martinelli F, Uratsu SL, Albrecht U, et al. Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLOS One. 2012;7(5):e38039.
  • Zhong Y, Cheng CZ, Jiang NH, et al. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One. 2015;10(6):e0126973.
  • Achor D, Welker S, Ben-Mahmoud S, et al. Dynamics of candidatus Liberibacter asiaticus movement and sieve-pore plugging in citrus sink cells. Plant Physiol. 2020;182(2):882–891.
  • Kim JS, Sagaram US, Burns JK, et al. Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology. 2009;99(1):50–57.
  • Albrecht U, Bowman KD. Gene expression in Citrus sinensis (L.) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Sci. 2008;175(3):291–306.
  • Zhang C, Shi H, Chen L, et al. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol. 2011;11(1):11–19.
  • Musetti R, Paolacci A, Ciaffi M, et al. Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology. 2010;100(4):390–399.
  • Wu S, Shan L, He P. Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 2014;228:118–126.
  • Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–266.
  • Fan X, Guo Q, Xu P, et al. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum. PLOS One. 2015;10(5):e0126148.
  • Jiang M, Liu QE, Liu ZN, et al. Over-expression of a WRKY transcription factor gene BoWRKY6 enhances resistance to downy mildew in transgenic broccoli plants. Australasian Plant Pathol. 2016;45(3):327–334.
  • Ambawat S, Sharma P, Yadav NR, et al. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19(3):307–321.
  • Chin EL, Mishchuk DO, Breksa AP, et al. Metabolite signature of Candidatus Liberibacter asiaticus infection in two citrus varieties. J Agric Food Chem. 2014;62(28):6585–6591.
  • Freitas DS, Carlos EF, Gil M, et al. NMR-based metabolomic analysis of Huanglongbing-asymptomatic and -symptomatic citrus trees. J Agric Food Chem. 2015;63(34):7582–7588.
  • Cevallos-Cevallos JM, Futch DB, Shilts T, et al. GC-MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus Huanglongbing. Plant Physiol Biochem. 2012;53:69–76.
  • Nwugo CC, Duan Y, Lin H. Study on citrus response to huanglongbing highlights a down-regulation of defense-related proteins in lemon plants upon ‘Ca. Liberibacter asiaticus’ infection. PLoS One. 2013;8(6):e67442.
  • Hall RD. Plant metabolomics in a nutshell: potential and future challenges. Annual Plant Rev Online. 2018;43:1–24.
  • Lòpez-Fernàndez S, Compant S, Vrhovsek U, et al. Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways. Plant Soil. 2016;405(1–2):155–175.
  • Mahmood A, Kataoka R. Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res. 2020;234:126421.
  • Munir S, Li Y, He P, et al. Unraveling the metabolite signature of citrus showing defense response towards Candidatus Liberibacter asiaticus after application of endophyte Bacillus subtilis L1-21. Microbiol Res. 2020;234:126425.
  • Killiny N, Jones SE, Nehela Y, et al. All roads lead to Rome: towards understanding different avenues of tolerance to Huanglongbing in citrus cultivars. Plant Physiol Biochem. 2018;129:1–10.
  • Killiny N, Hijaz F. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties. Plant Signal Behav. 2016;11(4):e1171449.
  • Mhlongo MI, Piater LA, Madala NE, et al. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.
  • Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013;36(12):2085–2103.
  • Sønderby IE, Geu-Flores F, Halkier BA. Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci. 2010;15(5):283–290.
  • Sharma A, Shahzad B, Rehman A, et al. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24(13):2452.
  • Hijaz F, Al-Rimawi F, Manthey JA, et al. Phenolics, flavonoids and antioxidant capacities in Citrus species with different degree of tolerance to Huanglongbing. Plant Signal Behav. 2020;15(5):1752447.
  • Maksym RP, Ghirardo A, Zhang W, et al. The defense-related isoleucic acid differentially accumulates in Arabidopsis among branched-chain amino acid-related 2-hydroxy carboxylic acids. Front Plant Sci. 2018;9:766.
  • Killiny N, Nehela Y. Metabolomic response to Huanglongbing: role of carboxylic compounds in Citrus sinensis response to ‘Candidatus Liberibacter asiaticus’ and its vector, Diaphorina citri. Mol Plant Microbe Interact. 2017;30(8):666–678.
  • Gamir J, Sánchez-Bel P, Flors V. Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Rep. 2014;33(12):1935–1949.
  • Liu Y, Xue A, Ding L, et al. Direct identification and metabolomic analysis of Huanglongbing associated with Candidatus Liberibacter spp. in navel orange by MALDI-TOF-MS. Anal Bioanal Chem. 2020;412(13):3091–3101.
  • Mandal A, Sarkar B, Mandal S, et al. Impact of agrochemicals on soil health. Agrochemicals detection, treatment and remediation. Amsterdam, Netherlands: Elsevier; 2020. p. 161–187.
  • Meena RS, Kumar S, Datta R, et al. Impact of agrochemicals on soil microbiota and management: a review. Land. 2020;9(2):34.
  • Junior GJS, da Silva Scapin M, Silva FP, et al. Spray volume and fungicide rates for citrus black spot control based on tree canopy volume. Crop Prot. 2016;85:38–45.
  • Zhang C, Hu X, Luo J, et al. Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules. 2015;20(1):1161–1175.
  • Al-Rimawi F, Hijaz F, Nehela Y, et al. Uptake, translocation, and stability of oxytetracycline and streptomycin in citrus plants. Antibiotics. 2019;8(4):196.
  • Zhang M, Powell CA, Guo Y, et al. Characterization of the microbial community structure in Candidatus Liberibacter asiaticus-infected citrus plants treated with antibiotics in the field. BMC Microbiol. 2013;13(1):112.
  • Shin K, Ascunce MS, Narouei-Khandan HA, et al. Effects and side effects of penicillin injection in Huanglongbing affected grapefruit trees. Crop Prot. 2016;90:106–116.
  • Ascunce MS, Shin K, Huguet-Tapia JC, et al. Penicillin trunk injection affects bacterial community structure in citrus trees. Microb Ecol. 2019;78(2):457–469.
  • Meena KK, Sorty AM, Bitla UM, et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci. 2017;8:172.
  • Shimizu M. Endophytic actinomycetes: biocontrol agents and growth promoters. Bacteria in agrobiology: plant growth responses. Berlin, Germany: Springer; 2011. p. 201–220.
  • Zhang M, Powell CA, Benyon LS, et al. Deciphering the bacterial microbiome of citrus plants in response to ‘Candidatus Liberibacter asiaticus’-infection and antibiotic treatments. PLoS One. 2013;8(11):e76331.
  • Heidari F, Riahi H, Yousefzadi M, et al. Antimicrobial activity of cyanobacteria isolated from hot spring of geno. Middle-East J Sci Res. 2012;12(3):336–339.
  • Boukaya N, Goudjal Y, Zamoum M, et al. Biocontrol and plant-growth-promoting capacities of actinobacterial strains from the Algerian Sahara and characterisation of Streptosporangium becharense SG1 as a promising biocontrol agent. Biocontrol Sci Technol. 2018;28(9):858–873.
  • Yang C, Powell CA, Duan Y, et al. Deciphering the bacterial microbiome in huanglongbing-affected citrus treated with thermotherapy and sulfonamide antibiotics. PLoS One. 2016;11(5):e0155472.
  • Chang Q, Wang W, Regev‐Yochay G, et al. Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl. 2015;8(3):240–247.
  • Huang Z, Wang P, Pu Z, et al. Effects of mancozeb on citrus rhizosphere bacterial community. Microb Pathog. 2021;154:104845.
  • Qureshi JA, Kostyk BC, Stansly PA. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of Huanglongbing pathogens. PLoS One. 2014;9(12):e112331.
  • Tiwari S, Mann RS, Rogers ME, et al. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag Sci. 2011;67(10):1258–1268.
  • Kumar U, Berliner J, Adak T, et al. Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. Ecotoxicol Environ Saf. 2017;135:225–235.
  • Taning CN, Andrade EC, Hunter WB, et al. Asian citrus psyllid RNAi pathway – RNAi evidence. Sci Rep. 2016;6:38082.
  • Chen X, Wicaksono WA, Berg G, et al. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci Total Environ. 2021;751:141799.
  • Mitter B, Brader G, Pfaffenbichler N, et al. Next generation microbiome applications for crop production – limitations and the need of knowledge-based solutions. Curr Opin Microbiol. 2019;49:59–65.
  • Sessitsch A, Pfaffenbichler N, Mitter B. Microbiome applications from lab to field: Facing complexity. Trends Plant Sci. 2019;24(3):194–198.
  • Hardoim PR, Van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.