1,912
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto-N-tetraose, and lacto-N-neotetraose

, , , , &
Pages 578-596 | Received 15 Jan 2021, Accepted 01 May 2021, Published online: 04 Aug 2021

References

  • Faijes M, Castejon-Vilatersana M, Val-Cid C, et al. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv. 2019;37(5):667–697.
  • Perez-Escalante E, Alatorre-Santamaria S, Castaneda-Ovando A, et al. Human milk oligosaccharides as bioactive compounds in infant formula: recent advances and trends in synthetic methods. Crit Rev Food Sci. 2020.
  • Alliet P, Puccio G, Janssens E, et al. Term infant formula supplemented with human milk oligosaccharides (2′-fucosyllactose and lacto-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. J Pediatr Gastroenterol Nutr. 2016;63(1S):S55.
  • Marriage BJ, Buck RH, Goehring KC, et al. Infants fed a lower calorie formula with 2′FL show growth and 2′FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr. 2015;61(6):649–658.
  • Puccio G, Alliet P, Cajozzo C, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624–631.
  • Ackerman DL, Doster RS, Weitkamp JH, et al. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group B Streptococcus. ACS Infect Dis. 2017;3(8):595–605.
  • Moore RE, Xu LL, Townsend SD. Prospecting human milk oligosaccharides as a defense against viral infections. ACS Infect Dis. 2021;7(2):254–263.
  • Sodhi CP, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr Res. 2021;89(1):91–101.
  • Chen X. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv Carbohydr Chem Biochem. 2015;72:113–190.
  • Bych K, Miks MH, Johanson T, et al. Production of HMOs using microbial hosts – from cell engineering to large scale production. Curr Opin Biotechnol. 2019;56:130–137.
  • Thomas PG, Carter MR, Atochina O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J Immunol. 2003;171(11):5837–5841.
  • El-Hawiet A, Kitova EN, Klassen JS. Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology. 2015;25(8):845–854.
  • Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr. 2014;144(5):586–591.
  • Ko YS, Kim JW, Lee JA, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev. 2020;49(14):4615–4636.
  • Yang D, Park SY, Park YS, et al. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020;38(7):745–765.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162.
  • Lane JA, Mehra RK, Carrington SD, et al. The food glycome: a source of protection against pathogen colonization in the gastrointestinal tract. Int J Food Microbiol. 2010;142(1–2):1–13.
  • Thurl S, Munzert M, Boehm G, et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75(11):920–933.
  • Albrecht S, Lane JA, Marino K, et al. A comparative study of free oligosaccharides in the milk of domestic animals. Br J Nutr. 2014;111(7):1313–1328.
  • Kunz C, Rudloff S, Schad W, et al. Lactose-derived oligosaccharides in the milk of elephants: comparison with human milk. Br J Nutr. 1999;82(5):391–399.
  • Prieto P. In vitro and clinical experiences with a human milk oligosaccharide, lacto-N-neotetraose, and fructooligosaccharides. Foods Food Ingred J Jpn. 2005;210:1018–1030.
  • Marcobal A, Barboza M, Sonnenburg ED, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10(5):507–514.
  • James K, Motherway MO, Bottacini F, et al. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep. 2016;6:38560.
  • Sela DA. Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol. 2011;149(1):58–64.
  • Asakuma S, Hatakeyama E, Urashima T, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286(40):34583–34592.
  • Terrazas LI, Walsh KL, Piskorska D, et al. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol. 2001;167(9):5294–5303.
  • Okano M, Satoskar AR, Nishizaki K, et al. Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J Immunol. 2001;167(1):442–450.
  • Pammi M, De-Plaen IG, Maheshwari A. Recent advances in necrotizing enterocolitis research: strategies for implementation in clinical practice. Clin Perinatol. 2020;47(2):383–397.
  • Autran CA, Schoterman MH, Jantscher-Krenn E, et al. Sialylated galacto-oligosaccharides and 2′-fucosyllactose reduce necrotising enterocolitis in neonatal rats. Br J Nutr. 2016;116(2):294–299.
  • Good M, Sodhi CP, Yamaguchi Y, et al. The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr. 2016;116(7):1175–1187.
  • Sodhi CP, Wipf P, Yamaguchi Y, et al. Insights image for "The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling.". Pediatr Res. 2021;89(1):248.
  • Rasmussen SO, Martin L, Ostergaard MV, et al. Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs. J Nutr Biochem. 2017;40:141–154.
  • Jantscher-Krenn E, Zherebtsov M, Nissan C, et al. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut. 2012;61(10):1417–1425.
  • Autran CA, Kellman BP, Kim JH, et al. Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut. 2018;67(6):1064–1070.
  • Idanpaan-Heikkila I, Simon PM, Zopf D, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis. 1997;176(3):704–712.
  • Tong HH, McIver MA, Fisher LM, et al. Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb Pathog. 1999;26(2):111–119.
  • Shang J, Piskarev VE, Xia M, et al. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance. Glycobiology. 2013;23(12):1491–1498.
  • Liu Y, Ramelot TA, Huang P, et al. Glycan specificity of P[19] rotavirus and comparison with those of related P genotypes. J Virol. 2016;90(21):9983–9996.
  • Hu L, Ramani S, Czako R, et al. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat Commun. 2015;6:8346.
  • Duska-McEwen G, Senft AP, Ruetschilling TL, et al. Human milk oligosaccharides enhance innate immunity to respiratory syncytial virus and influenza in vitro. Food Sci Nutr. 2014;5:1387–1398.
  • Ramani S, Stewart CJ, Laucirica DR, et al. Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun. 2018;9(1):5010.
  • Kuntz S, Kunz C, Rudloff S. Oligosaccharides from human milk induce growth arrest via G2/M by influencing growth-related cell cycle genes in intestinal epithelial cells. Br J Nutr. 2009;101(9):1306–1315.
  • Kuntz S, Rudloff S, Kunz C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr. 2008;99(3):462–471.
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000547; 2015. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=547
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000659; 2016. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=659
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000895; 2019. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=895
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000833; 2019. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=923
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000919; 2020. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=919
  • U.S. Food and Drug Administration (U.S. FDA). Agency response letter GRAS notice no. GRN 000923; 2020. Available from: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=923
  • Aly MRE, Ibrahim ESI, El Ashry ESH, et al. Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group. Carbohydr Res. 1999;316(1–4):121–132.
  • Yamada A, Hatano K, Koyama T, et al. Syntheses of a series of lacto-N-neotetraose clusters using a carbosilane dendrimer scaffold. Carbohydr Res. 2006;341(4):467–473.
  • Craft KM, Townsend SD. Synthesis of lacto-N-tetraose. Carbohydr Res. 2017;440–441:43–50.
  • Bandara MD, Stine KJ, Demchenko AV. The chemical synthesis of human milk oligosaccharides: lacto-N-tetraose (Galβ1→3GlcNAcβ1→3Galβ1→4Glc). Carbohydr Res. 2019;486:107824.
  • Han NS, Kim TJ, Park YC, et al. Biotechnological production of human milk oligosaccharides. Biotechnol Adv. 2012;30(6):1268–1278.
  • Sprenger GA, Baumgärtner F, Albermann C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J Biotechnol. 2017;258:79–91.
  • Yates AD, Watkins WM. Enzymes involved in the biosynthesis of glycoconjugates. A UDP-2-acetamido-2-deoxy-d-glucose: beta-d-galactopyranosyl-(1 leads to 4)-saccharide (1 leads to 3)-2-acetamido-2-deoxy-beta-d-glucopyranosyltransferase in human serum. Carbohydr Res. 1983;120:251–268.
  • Murata T, Inukai T, Suzuki M, et al. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj J. 1999;16(3):189–195.
  • Wakarchuk W, Martin A, Jennings MP, et al. Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. J Biol Chem. 1996;271(32):19166–19173.
  • McArthur JB, Yu H, Chen X. A bacterial β1-3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catal. 2019;9(12):10721–10726.
  • Chen CC, Zhang Y, Xue MY, et al. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chem Commun (Camb). 2015;51(36):7689–7692.
  • Chen X, Xu L, Jin L, et al. Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from Bifidobacterium bifidum. Appl Environ Microbiol. 2016;82(18):5642–5652.
  • Schmölzer K, Weingarten M, Baldenius K, et al. Glycosynthase principle transformed into biocatalytic process technology: lacto-N-triose II production with engineered exo-hexosaminidase. ACS Catal. 2019;9(6):5503–5514.
  • Ruzic L, Bolivar JM, Nidetzky B. Glycosynthase reaction meets the flow: continuous synthesis of lacto-N-triose II by engineered β-hexosaminidase immobilized on solid support. Biotechnol Bioeng. 2020;117(5):1597–1602.
  • Nyffenegger C, Nordvang RT, Zeuner B, et al. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases. Appl Microbiol Biotechnol. 2015;99(19):7997–8009.
  • Liu YH, Wang L, Huang P, et al. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem. 2020;332:127438.
  • Liu XW, Xia C, Li L, et al. Characterization and synthetic application of a novel beta1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg Med Chem. 2009;17(14):4910–4915.
  • Schmölzer K, Weingarten M, Baldenius K, et al. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org Biomol Chem. 2019;17(23):5661–5665.
  • Zeuner B, Nyffenegger C, Mikkelsen JD, et al. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. N Biotechnol. 2016;33(3):355–360.
  • Renaudie L, Daniellou R, Auge C, et al. Enzymatic supported synthesis of lacto-N-neotetraose using dendrimeric polyethylene glycol. Carbohydr Res. 2004;339(3):693–698.
  • Piller F, Cartron JP. UDP-GlcNAc:Galβ1-4Glc(NAc)β1-3N-acetylglucosaminyltransferase. Identification and characterization in human serum. J Biol Chem. 1983;258(20):12293–12299.
  • Sasaki K, Kurata-Miura K, Ujita M, et al. Expression cloning of cDNA encoding a human beta-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc Natl Acad Sci U S A. 1997;94(26):14294–14299.
  • Tsuji Y, Urashima T, Matsuzawa T. The characterization of a UDP-N-acetylglucosamine: Galβ1-4Glc(NAc)β1-3 N-acetylglucosaminyltransferase in fluids from rat rete testis. Biochim Biophys Acta. 1996;1289(1):115–121.
  • van den Eijnden DH, Koenderman AH, Schiphorst WE. Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide β1-3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. J Biol Chem. 1988;263(25):12461–12471.
  • Blixt O, van Die I, Norberg T, et al. High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1->3Gal and GalNAc beta 1->3Gal linkages. Glycobiology. 1999;9(10):1061–1071.
  • Miwa M, Horimoto T, Kiyohara M, et al. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology. 2010;20(11):1402–1409.
  • Fujimoto H, Miyasato M, Ito Y, et al. Purification and properties of recombinant β-galactosidase from Bacillus circulans. Glycoconj J. 1998;15(2):155–160.
  • Sano M, Hayakawa K, Kato I. Purification and characterization of an enzyme releasing lacto-N-biose from oligosaccharides with type-1 chain. J Biol Chem. 1993;268(25):18560–18566.
  • Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol. 2008;74(13):3996–4004.
  • Prudden AR, Liu L, Capicciotti CJ, et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc Natl Acad Sci U S A. 2017;114(27):6954–6959.
  • Lee SY, Kim HU, Chae TU, et al. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal. 2019;2(10):942–944.
  • Priem B, Gilbert M, Wakarchuk WW, et al. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology. 2002;12(4):235–240.
  • Baumgärtner F, Conrad J, Sprenger GA, et al. Synthesis of the human milk oligosaccharide lacto-N-tetraose in metabolically engineered, plasmid-free E. coli. Chembiochem. 2014;15(13):1896–1900.
  • Baumgärtner F, Sprenger GA, Albermann C. Galactose-limited fed-batch cultivation of Escherichia coli for the production of lacto-N-tetraose. Enzyme Microb Technol. 2015;75-76:37–43.
  • Dong XM, Li N, Liu ZM, et al. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnol Biofuels. 2019;12(1):212.
  • Dong XM, Li N, Liu ZM, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J Agric Food Chem. 2020;68(8):2477–2484.
  • Dumon C, Priem B, Martin SL, et al. In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous expression of Helicobacter pylori α-1,3 fucosyltransferase in engineered Escherichia coli. Glycoconj J. 2001;18(6):465–474.
  • Dumon C, Samain E, Priem B. Assessment of the two Helicobacter pylori alpha-1,3-fucosyltransferase ortholog genes for the large-scale synthesis of LewisX human milk oligosaccharides by metabolically engineered Escherichia coli. Biotechnol Prog. 2004;20(2):412–419.
  • Drouillard S, Driguez H, Samain E. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori alpha1,2-fucosyltransferase in metabolically engineered Escherichia coli cells. Angew Chem Int Ed Engl. 2006;45(11):1778–1780.
  • Baumgärtner F, Jurzitza L, Conrad J, et al. Synthesis of fucosylated lacto-N-tetraose using whole-cell biotransformation. Bioorg Med Chem. 2015;23(21):6799–6806.
  • Long LF, Azadi P, Chen R. Designer biocatalysts for direct incorporation of exogenous galactose into globotriose. Biotechnol Bioeng. 2020;117(1):285–290.
  • Zhu YY, Wan L, Meng JW, et al. Metabolic engineering of Escherichia coli for lacto-N-triose II production with high productivity. J Agric Food Chem. 2021;69(12):3702–3711.
  • Kellman BP. Elucidating human milk oligosaccharide biosynthetic genes through network-based multiomics integration. bioRxiv. 2020.
  • Miyazaki T, Sato T, Furukawa K, et al. Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori. Methods Enzymol. 2010;480:511–524.
  • Zhao C, Wu YJ, Yu H, et al. The one-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongates α1-2-fucosyltransferase. Chem Commun (Camb). 2016;52(20):3899–3902.
  • You J, Lin SJ, Jiang T. Origins and evolution of the α-l-fucosidases: from bacteria to metazoans. Front Microbiol. 2019;10:1756.
  • Sakurama H, Fushinobu S, Hidaka M, et al. 1,3-1,4-α-l-Fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains. J Biol Chem. 2012;287(20):16709–16719.
  • Zeuner B, Vuillemin M, Holck J, et al. Loop engineering of an α-1,3/4-l-fucosidase for improved synthesis of human milk oligosaccharides. Enzyme Microb Technol. 2018;115:37–44.
  • Saumonneau A, Champion E, Peltier-Pain P, et al. Design of an α-l-transfucosidase for the synthesis of fucosylated HMOs. Glycobiology. 2016;26(3):261–269.
  • Huang HH, Fang JL, Wang HK, et al. Substrate characterization of Bacteroides fragilis α1,3/4-fucosyltransferase enabling access to programmable one-pot enzymatic synthesis of KH-1 antigen. ACS Catal. 2019;9(12):11794–11800.
  • Palao E, Duran-Sampedro G, Madrid M, et al. Exploring the application of the Negishi reaction of HaloBODIPYs: generality, regioselectivity, and synthetic utility in the development of BODIPY laser dyes. J Org Chem. 2016;81(9):3700–3710.
  • Yu H, Li YH, Wu ZG, et al. H. pylori α1-3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem Commun (Camb). 2017;53(80):11012–11015.
  • Totani K, Shimizu K, Harada Y, et al. Enzymatic synthesis of oligosaccharide containing Le(x) unit by using partially purified chicken serum. Biosci Biotechnol Biochem. 2002;66(3):636–640.
  • Yao W, Yan J, Chen X, et al. Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Carbohydr Res. 2015;401:5–10.
  • McArthur JB, Yu H, Zeng J, et al. Converting Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) to a regioselective α2-6-sialyltransferase by saturation mutagenesis and regioselective screening. Org Biomol Chem. 2017;15(7):1700–1709.
  • Champion E, McConnell B, Dekany G. Ternary mixtures of 6′-SL, LNnT and LSTc. WO 2016/199071 A1. 2016.
  • Vogel A, Schmiedel R, Champion E, et al. Mutated sialidases. WO 2016/199069 A1. 2016.
  • Johnson KF. Synthesis of oligosaccharides by bacterial enzymes. Glycoconj J. 1999;16(2):141–146.
  • Yu H, Lau K, Thon V, et al. Synthetic disialyl hexasaccharides protect neonatal rats from necrotizing enterocolitis. Angew Chem Int Ed Engl. 2014;53(26):6687–6691.
  • Yu H, Yan XB, Autran CA, et al. Enzymatic and chemoenzymatic syntheses of disialyl glycans and their necrotizing enterocolitis preventing effects. J Org Chem. 2017;82(24):13152–13160.
  • Wan L, Zhu YY, Zhang WL, et al. α-l-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Appl Microbiol Biotechnol. 2020;104(13):5619–5631.
  • Sugiyama Y, Gotoh A, Katoh T, et al. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-l-fucosynthase. Glycobiology. 2016;26(11):1235–1247.
  • Wada J, Honda Y, Nagae M, et al. 1,2-alpha-l-Fucosynthase: a glycosynthase derived from an inverting alpha-glycosidase with an unusual reaction mechanism. FEBS Lett. 2008;582(27):3739–3743.
  • Sakurama H, Tsutsumi E, Ashida H, et al. Differences in the substrate specificities and active-site structures of two α-l-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron. Biosci Biotechnol Biochem. 2012;76(5):1022–1024.
  • Zeuner B, Muschiol J, Holck J, et al. Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides. N Biotechnol. 2018;41:34–45.
  • Bai J, Wu Z, Sugiarto G, et al. Biochemical characterization of Helicobacter pylori α1-3-fucosyltransferase and its application in the synthesis of fucosylated human milk oligosaccharides. Carbohydr Res. 2019;480:1–6.
  • Prudden AR, Chinoy ZS, Wolfert MA, et al. A multifunctional anomeric linker for the chemoenzymatic synthesis of complex oligosaccharides. Chem Commun (Camb). 2014;50(54):7132–7135.
  • Yu H, Chen X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org Biomol Chem. 2016;14(10):2809–2818.
  • Wan L, Zhu YY, Li W, et al. Combinatorial modular pathway engineering for guanosine 5′-diphosphate-l-fucose production in recombinant Escherichia coli. J Agric Food Chem. 2020;68(20):5668–5675.
  • Choi YH, Park BS, Seo JH, et al. Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and β-galactosidase modification . Biotechnol Bioeng. 2019;116(12):3324–3332.
  • Zhang XL, Liu YF, Liu L, et al. Microbial production of sialic acid and sialylated human milk oligosaccharides: advances and perspectives. Biotechnol Adv. 2019;37(5):787–800.
  • Holck J, Larsen DM, Michalak M, et al. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. N Biotechnol. 2014;31(2):156–165.
  • Guo L, Chen X, Xu L, et al. Enzymatic synthesis of 6′-sialyllactose, a dominant sialylated human milk oligosaccharide, by a novel exo-α-sialidase from Bacteroides fragilis NCTC9343. Appl Environ Microbiol. 2018;84(13):e00071-18.
  • Sugiarto G, Lau K, Qu JY, et al. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chem Biol. 2012;7(7):1232–1240.
  • Choi YH, Kim JH, Park BS, et al. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol Bioeng. 2016;113(8):1666–1675.
  • Tan YM, Zhang Y, Han YB, et al. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method. Sci Adv. 2019;5(10):eaaw8451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.