1,171
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Delineating the epigenetic regulation of heat and drought response in plants

& ORCID Icon
Pages 548-561 | Received 12 Jul 2020, Accepted 27 Mar 2021, Published online: 21 Jul 2021

References

  • Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–260.
  • He Y, Li Z. Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet. 2018;34(11):856–866.
  • Tollefson J. How hot will Earth get by 2100? Nature. 2020;580(7804):443–445.
  • Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147.
  • Lamaoui M, Jemo M, Datla R, et al. Heat and drought stresses in crops and approaches for their mitigation. Front Chem. 2018;6:26.
  • Dreesen FE, De Boeck HJ, Janssens IA, et al. Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot. 2012;79:21–30.
  • Zandalinas SI, Mittler R, Balfagón D, et al. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2–12.
  • Friedrich T, Faivre L, Bäurle I, et al. Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ. 2019;42(3):762–770.
  • Lee SB, Suh MC. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep. 2015;34(4):557–572.
  • Meng LS. Compound synthesis or growth and development of roots/stomata regulate plant drought tolerance or water use efficiency/water uptake efficiency. J Agric Food Chem. 2018;66(14):3595–3604.
  • Singh RK, Shweta S, Muthamilarasan M, et al. Study on aquaporins of Setaria italica suggests the involvement of SiPIP3;1 and SiSIP1;1 in abiotic stress response. Funct Integr Genomics. 2019;19(4):587–596.
  • Singh RK, Deshmukh R, Muthamilarasan M, et al. Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiol Biochem. 2020;149:178–189.
  • Nishiyama Y, Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol. 2014;98(21):8777–8796.
  • Priya M, Dhanker OP, Siddique KHM, et al. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. Theor Appl Genet. 2019;132(6):1607–1638.
  • Hashiguchi A, Komatsu S. Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes. 2016;4(4):42.
  • Lister R, O'Malley RC, Tonti-Filippini J, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–536.
  • Pandey G, Yadav CB, Sahu PP, et al. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep. 2017;36(5):759–772.
  • Prasad A, Sharma N, Muthamilarasan M, et al. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol. 2019;39(4):587–601.
  • Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55(3):451–458.
  • Pandey R, Müller A, Napoli CA, et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 2002;30(23):5036–5055.
  • Hu Y, Qin F, Huang L, et al. Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun. 2009;388(2):266–271.
  • Liu X, Luo M, Zhang W, et al. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol. 2012;12:145.
  • Hu Y, Lu Y, Zhao Y, et al. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Front Plant Sci. 2019;10:1236.
  • Luo M, Cheng K, Xu Y, et al. Plant responses to abiotic stress regulated by histone deacetylases. Front Plant Sci. 2017;8:2147.
  • Kumar V, Singh B, Singh SK, et al. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. Plant J. 2018;95(6):1069–1083.
  • Shen Y, Wei W, Zhou DX. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 2015;20(10):614–621.
  • Earley KW, Shook MS, Brower-Toland B, et al. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 2007;52(4):615–626.
  • Liu X, Yang S, Yu CW, et al. Histone acetylation and plant development. Enzymes. 2016;40:173–199.
  • Yu Y, Bu Z, Shen WH, et al. An update on histone lysine methylation in plants. Progr Nat Sci. 2009;19(4):407–413.
  • Wang J, Meng X, Yuan C, et al. The roles of cross-talk epigenetic patterns in Arabidopsis thaliana. Brief Funct Genomics. 2016;15(4):278–287.
  • Springer NM, Napoli CA, Selinger DA, et al. Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 2003;132(2):907–925.
  • Lu Z, Huang X, Ouyang Y, et al. Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One. 2013;8(6):e65426.
  • Niu L, Lu F, Pei Y, et al. Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Rep. 2007;8(12):1190–1195.
  • Liu C, Lu F, Cui X, et al. Histone methylation in higher plants. Annu Rev Plant Biol. 2010;61:395–420.
  • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–953.
  • Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–816.
  • Spedaletti V, Polticelli F, Capodaglio V, et al. Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana. Biochemistry. 2008;47(17):4936–4947.
  • Lu F, Li G, Cui X, et al. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J Integr Plant Biol. 2008;50(7):886–896.
  • Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007;8(4):307–318.
  • Sharma R, Mohan Singh RK, Malik G, et al. Rice cytosine DNA methyltransferases – gene expression profiling during reproductive development and abiotic stress. FEBS J. 2009;276(21):6301–6311.
  • Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature. 2007;447(7143):418–424.
  • Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–219.
  • Penterman J, Zilberman D, Huh JH, et al. DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA. 2007;104(16):6752–6757.
  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldán-Arjona T. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol. 2008;67(6):671–681.
  • Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517–534.
  • Sahu PP, Pandey G, Sharma N, Puranik S, et al. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 2013;32(8):1151–1159.
  • Okada T, Endo M, Singh MB, et al. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J. 2005;44(4):557–568.
  • March-Díaz R, Reyes JC. The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant. 2009;2(4):565–577.
  • Talbert PB, Henikoff S. Histone variants-ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11(4):264–275.
  • Shi L, Wang J, Hong F, et al. Four amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes. Proc Natl Acad Sci USA. 2011;108(26):10574–10578.
  • Stroud H, Otero S, Desvoyes B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2012;109(14):5370–5375.
  • Shu H, Nakamura M, Siretskiy A, et al. Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes. Genome Biol. 2014;15(4):R62.
  • Zilberman D, Coleman-Derr D, Ballinger T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature. 2008;456(7218):125–129.
  • Yelagandula R, Stroud H, Holec S, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell. 2014;158(1):98–109.
  • Sura W, Kabza M, Karlowski WM, et al. Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes. Plant Cell. 2017;29(4):791–807.
  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136–147.
  • Wierzbicki AT, Jerzmanowski A. Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics. 2005;169(2):997–1008.
  • Rutowicz K, Puzio M, Halibart-Puzio J, et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiol. 2015;169(3):2080–2101.
  • Kim JM, To TK, Ishida J, Matsui A, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol. 2012;53(5):847–856.
  • Fang H, Liu X, Thorn G, et al. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun. 2014;443(2):400–405.
  • Kim JM, To TK, Matsui A, et al. Acetate-mediated novel survival strategy against drought in plants. Nat Plants. 2017;3:17097.
  • Chen X, Lu L, Mayer KS, et al. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. Elife. 2016;5:e17214.
  • Zheng Y, Ding Y, Sun X, et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot. 2016;67(6):1703–1713.
  • Li S, Lin YJ, Wang P, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell. 2019;31(3):663–686.
  • Singh P, Yekondi S, Chen PW, et al. Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1-dependent manner. Plant Cell. 2014;26(6):2676–2688.
  • Wang P, Zhao L, Hou H, et al. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol. 2015;56(5):965–976.
  • Zhang H, Yue M, Zheng X, et al. The role of promoter-associated histone acetylation of Haem oxygenase-1 (HO-1) and giberellic acid-stimulated like-1 (GSL-1) genes in heat-induced lateral root primordium inhibition in maize. Front Plant Sci. 2018;9:1520.
  • Baek D, Shin G, Kim MC, et al. Histone deacetylase HDA9 with ABI4 contributes to abscisic acid homeostasis in drought stress response. Front Plant Sci. 2020;11:143.
  • Song J, Henry HAL, Tian L. Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses. Plant Sci. 2019;283:355–365.
  • Roca Paixão JF, Gillet FX, Ribeiro TP, et al. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep. 2019;9(1):8080.
  • Wei F, Tang D, Li Z, et al. Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). Biol Res. 2019;52(1):20.
  • Tasset C, Singh Yadav A, Sureshkumar S, et al. POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genet. 2018;14(3):e1007280.
  • Lee HG, Seo PJ. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun. 2019;10(1):1713.
  • Ueda M, Matsui A, Nakamura T, et al. Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signal Behav. 2018;13(8):e1475808.
  • Mehdi S, Derkacheva M, Ramström M, et al. The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell. 2016;28(1):42–54.
  • Ma X, Zhang B, Liu C, et al. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. Plant Sci. 2017;265:1–11.
  • Buszewicz D, Archacki R, Palusiński A, et al. HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ. 2016;39(10):2108–2122.
  • Hu Z, Song N, Zheng M, et al. Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J. 2015;84(6):1178–1191.
  • Luo M, Wang YY, Liu X, et al. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot. 2012;63(8):3297–3306.
  • Papaefthimiou D, Likotrafiti E, Kapazoglou A, et al. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Biochem. 2010;48(2-3):98–107.
  • Chen LT, Wu K. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signal Behav. 2010;5(10):1318–1320.
  • van Dijk K, Ding Y, Malkaram S, et al. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol. 2010;10:238.
  • Zong W, Zhong X, You J, et al. Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol. 2013;81(1-2):175–188.
  • Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J. 2011;66(5):735–744.
  • Ding Y, Fromm M, Avramova Z. Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun. 2012;3:740.
  • Kim JM, Sasaki T, Ueda M, et al. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci. 2015;6:114.
  • Song ZT, Zhang LL, Han JJ, et al. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. Plant J. 2021;105(5):1326–1338.
  • Ramirez-Prado JS, Latrasse D, Rodriguez-Granados NY, et al. The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity. Plant J. 2019;100(6):1118–1131.
  • Xu J, Wang Q, Freeling M, et al. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res. 2017;45(9):5126–5141.
  • Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet. 2013;14(12):880–893.
  • Angel A, Song J, Dean C, et al. A Polycomb-based switch underlying quantitative epigenetic memory. Nature. 2011;476(7358):105–108.
  • Hepworth J, Dean C. Flowering Locus C's lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol. 2015;168(4):1237–1245.
  • Gan ES, Xu Y, Wong JY, et al. Jumonji demethylases moderate precocious flowering at elevated temperature via regulation of FLC in Arabidopsis. Nat Commun. 2014;5:5098.
  • Fang X, Wu Z, Raitskin O, et al. The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control. Proc Natl Acad Sci USA. 2020;117(26):15316–15321.
  • Lämke J, Brzezinka K, Altmann S, et al. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 2016;35(2):162–175.
  • Liu HC, Lämke J, Lin SY, et al. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. 2018;95(3):401–413.
  • Borg M, Jacob Y, Susaki D, et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol. 2020;22(6):621–629.
  • Qian Y, Hu W, Liao J, et al. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem Biophys Res Commun. 2019;512(4):742–749.
  • Folsom JJ, Begcy K, Hao X, et al. Rice fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol. 2014;165(1):238–248.
  • Singh RK, Jaishankar J, Muthamilarasan M, et al. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep. 2016;6:32641.
  • GayacharanJoel AJ. Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants. 2013;19:379–387.
  • Gao G, Li J, Li H, et al. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci. 2014;64(2):125–133.
  • Min L, Li Y, Hu Q, et al. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol. 2014;164(3):1293–1308.
  • Lamelas L, Valledor L, Escandón M, et al. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. J Exp Bot. 2020;71(6):2040–2057.
  • Herman JJ, Sultan SE. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci. 2016;283:20160988.
  • Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci USA. 2014;111(23):8547–8552.
  • Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017;22(1):53–65.
  • Brzezinka K, Altmann S, Bäurle I. BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant Cell Environ. 2019;42(3):771–781.
  • Hofmeister BT, Lee K, Rohr NA, et al. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 2017;18(1):155.
  • Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.
  • Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38(3):465–475.
  • Popova OV, Dinh HQ, Aufsatz W, et al. The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant. 2013;6(2):396–410.
  • Naydenov M, Baev V, Apostolova E, et al. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem. 2015;87:102–108.
  • Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15(2):196–212.
  • Saez A, Rodrigues A, Santiago J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell. 2008;20(11):2972–2988.
  • Mlynárová L, Nap JP, Bisseling T. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J. 2007;51(5):874–885.
  • Han SK, Sang Y, Rodrigues A, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell. 2012;24(12):4892–4906.
  • Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. Plant J. 2019;99(1):144–162.
  • Brzezinka K, Altmann S, Czesnick H, et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife. 2016;5:e17061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.