965
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Biomolecules of mushroom: a recipe of human wellness

ORCID Icon, , , , , & show all
Pages 913-930 | Received 06 Apr 2021, Accepted 25 Jul 2021, Published online: 19 Aug 2021

References

  • Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387.
  • Gupta S, Summuna B, Gupta M, et al. Dible mushrooms: cultivation, bioactive molecules, and health benefits. In: Mérillon JM, Ramawat K, editors. Bioactive molecules in food. Reference series in phytochemistry. Cham: Springer; 2018. p. 1–33.
  • Singh MP, Srivastava AK, Vishwakarma SK, et al. Mushroom biotechnology. In: Singh MP, Agrawal A, Sharma B, editors. Recent trends in biotechnology, vol. 1. USA: Nova Science Publishers; 2010. p. 77:85.
  • Singh MP. Biodegradation of lignocellulosic wastes through cultivation of pleurotus sajor-caju. Science and cultivation of edible fungi. Rotterdam: A.A. Balkema; 2000. p. 517–521.
  • Singh MP. Mushroom biotechnology: the rise of the fallen. Proceedings of SPIE, 11020, Smart Biomedical and Physiological Sensor Technology XV, Baltimore, MD. 2019. 11020:1102003.
  • Singh MP. The mushrooming of mushroom biotechnology. In: Singh MP, Verma V, Ashish Kumar Singh, editors. Incredible world of biotechnology. and New York (USA): Nova Science Publishers; 2017. p. 1–12.
  • Benjamin DR. Mushrooms: poisons and panaceas. New York: S.W.H. Freeman & Company. 1995.
  • Chang ST. Development of the world mushroom industry and its roles in human health. Mushroom Biol Biotechnol. 2007;213:1.
  • Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol. 2016;2016:7654123.
  • Chang ST, Miles PG. The nutritional attributes and medicinal value of edible mushrooms. Edible Mushrooms and Their Cultivation. Boca Raton, FL: CRC Press; 1989. p. 27–40.
  • Anekwe TD, Rahkovsky I. Economic costs and benefits of healthy eating. Curr Obes Rep. 2013;2(3):225–234.
  • Jeong SC, Jeong YT, Yang BK, et al. White button mushroom (agaricusbisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res. 2010;30(1):49–56.
  • Kim HM, Kang JS, Kim JY, et al. Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse . Int Immunopharmacol. 2010;10(1):72–78.
  • Miyamoto I, Liu J, Shimizu K, et al. Regulation of osteoclastogenesis by ganoderic acid DM isolated from Ganoderma lucidum. Eur J Pharmacol. 2009;602(1):1–7.
  • Deepalakshmi K, Sankaran M. Pleurotusostreatus: an oyster mushroom with nutritional and medicinal properties. J Biochem Technol. 2014;5:718–726.
  • Geng X, Tian G, Zhang W, et al. A Tricholoma matsutake peptide with angiotensin converting enzyme inhibitory and antioxidative activities and antihypertensive effects in spontaneously hypertensive rats. Sci Rep. 2016;6:24130.
  • Kobori M, Yoshida M, Ohnishi-Kameyama M, et al. 5alpha,8alpha-Epidioxy-22E-ergosta-6,9(11),22-trien-3beta-ol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells . Biol Pharm Bull. 2006;29(4):755–759.
  • Ren G, Zhao YP, Yang L, et al. Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Lett. 2008;262(2):190–200.
  • Chen NY, Lai HH, Hsu TH, et al. Induction of apoptosis in human lung carcinoma A549 epithelial cells with an ethanol extract of Tremella mesenterica. Biosci Biotechnol Biochem. 2008;72(5):1283–1289.
  • Pohleven J, Obermajer N, Sabotič J, et al. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta. 2009;1790(3):173–181.
  • Heo JC, Nam SH, Nam DY, et al. Anti-asthmatic activities in mycelial extract and culture filtrate of cordycepssphecocephala J201. Int J Mol Med. 2010;26(3):351–356.
  • Cheung PCK. The nutritional and health benefits of mushrooms. Nutr Bull. 2010;35(4):292–299.
  • Gunawardena D, Bennett L, Shanmugam K, et al. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages. Food Chem. 2014;148:92–96.
  • Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013;93(2):209–218.
  • Griessmayr PC, Gauthier M, Barber LG, et al. Mushroom-derived maitakePETfraction as single agent for the treatment of lymphoma in dogs. J Vet Intern Med. 2007;21(6):1409–1412.
  • Chaturvedi VK, Agarwal S, Gupta KK, et al. Medicinal mushroom: boon for therapeutic applications. 3 Biotech. 2018;8(8):334.
  • Chaturvedi VK, Rai SN, Tabassum N, et al. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: a potential material for biomedical applications. Biochem Biophys Rep. 2020;24:100812.
  • Chaturvedi VK, Yadav N, Rai NK, et al. Pleurotussajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: a new era of herbonanoceutics. Molecules. 2020;25:3091.
  • Dubey SK, Chaturvedi VK, Mishra D, et al. Role of edible mushroom as a potent therapeutics for the diabetes and obesity. 3Biotech. 2019;09:1–12.
  • Pandey AT, Pandey I, Hachenberger Y, et al. Emerging paradigm against global antimicrobial resistance via bioprospecting of mushroom into novel nanotherapeutics development. Trends Food Sci Technol. 2020;106:333–344.
  • Rai SN, Mishra D, Singh P, et al. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed Pharmacother. 2021;137:111377.
  • Guillamón E, García-Lafuente A, Lozano M, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715–723.
  • Phan CW, David P, Sabaratnam V. Edible and medicinal mushrooms: emerging brain food for the mitigation of neurodegenerative diseases. J Med Food. 2017;20(1):1–0.
  • Venditti A, Frezza C, Sciubba F, et al. Primary and secondary metabolites of an European edible mushroom and its nutraceutical value: Suillus bellinii (Inzenga) Kuntze. Nat Prod Res. 2017;31(16):1910–1919.
  • Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–772.
  • Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11:45.
  • Dasgupta A, Acharya K. Mushrooms: an emerging resource for therapeutic terpenoids. 3Biotech. 2019;9:369.
  • Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–584.
  • Lee KH, Morris-Natschke SL, Yang X, et al. Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Tradit Complement Med. 2012;2(2):84–95.
  • Ganeshpurkar A, Rai G, Jain AP. Medicinal mushrooms: towards a new horizon. Pharmacogn Rev. 2010;4(8):127–135.
  • Zhang JJ, Li Y, Zhou T, et al. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21:938.
  • Zhang Y, Hu T, Zhou H, et al. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats . Int J Biol Macromol. 2016;83:126–132.
  • Dubey SK, Yadav CB, Bajpeyee A, et al. Effect of Pleurotus fossulatus aqueous extract on biochemical properties of liver and kidney in streptozotocin-induced diabetic rat. Diabetes Metab Syndr Obes. 2020;13:3035–3046.
  • Cao SY, Zhao CN, Gan RY, et al. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: an updated review. Antioxidants. 2019; 8:166.
  • Elkhateeb WA, Daba GM, Sheir D, et al. GC-Mass analysis and in vitro hypocholesterolemic, antirotavirus, anti-human colon carcinoma activities of the crude extract of a Japanese ganoderma Sp. Egypt Pharma J. 2019;18:102–110.
  • Tan BL, Norhaizan ME, Liew WP, et al. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162.
  • Hunt PA, Sathyanarayana S, Fowler PA, et al. Female reproductive disorders, diseases, and costs of exposure to endocrine disrupting chemicals in the European union. J Clin Endocrinol Metab. 2016;101(4):1562–1570.
  • Phan CW, David P, Naidu M, et al. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol. 2015;35(3):355–368.
  • Phan CW, Tan EY, Sabaratnam V. Bioactive molecules in edible and medicinal mushrooms for human wellness. Bioactive molecules in food. Reference series in phytochemistry. Springer International Publisher; 2019. p. 1597–1620.
  • Rajasekara M, Kalaimagal C. Cardioprotective effect of a medicinal mushroom, ganodermalucidum against adriamycin induced toxicity. International J Pharmacol. 2012;8(4):252–258.
  • Martin KR. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment. Nutr J. 2010;9(1):1–9.
  • Gil-Ramirez AL, Clavijo CR, Palanisamy MA, et al. Edible mushrooms as potential sources of new hypocholesterolemic compounds. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France; 2011. p. 110–119.
  • Kaneda T, Tokuda S. Effect of various mushroom preparations on cholesterol levels in rats. J Nutr. 1966;90(4):371–376.
  • Li H, Zhang M, Ma G. Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition. 2010;26(5):556–562.
  • Ryong LH, Tertov VV, Vasil’ev AV, et al. Antiatherogenic and antiatherosclerotic effects of mushroom extracts revealed in human aortic intima cell culture. Drug Dev Res. 1989;17(2):109–117.
  • Abidin MHZ, Abdullah N, Abidin NZ. Therapeutic properties of Pleurotus species (oyster mushrooms) for atherosclerosis: a review. Int J Food Prop. 2017;20(6):1251–1261.
  • Lee DH, Yang M, Giovannucci EL, et al. Mushroom consumption, biomarkers, and risk of cardiovascular disease and type 2 diabetes: a prospective cohort study of US women and men. Am J Clin Nutr. 2019;110(3):666–674.
  • Yang H, Hwang I, Kim S, et al. Lentinus edodes promotes fat removal in hypercholesterolemic mice. Exp Ther Med. 2013;6(6):1409–1413.
  • Xiao C, Wu Q, Tan J, et al. Inhibitory effects on-glucosidase and hypoglycemic effects of the crude polysaccharides isolated from 11 edible fungi. J Med Plants Res. 2011;5:6963–6967.
  • Lu X, Chen H, Dong P, et al. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom inonotusobliquus. J Sci Food Agric. 2010;90(2):276–280.
  • Ma HT, Hsieh JF, Chen ST. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113.
  • Zhu K, Nie S, Li C, et al. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. Int J Biol Macromol. 2013;57:142–150.
  • Ma G, Yang W, Zhao L, et al. A critical review on the health promoting effects of mushrooms nutraceuticals. Food Sci Hum Well. 2018;7(2):125–133.
  • Martel J, Ojcius DM, Chang CJ, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017;13(3):149–160.
  • Jiang X, Meng W, Li L, et al. Adjuvant therapy with mushroom polysaccharides for diabetic complications. Front Pharmacol. 2020;11:168.
  • Chou YJ, Kan WC, Chang CM, et al. Renal protective effects of low molecular weight of inonotusobliquus polysaccharide (LIOP) on HFD/STZ-induced nephropathy in mice. Int J Mol Sci. 2016;17:1535.
  • Liu M, Song X, Zhang J, et al. Protective effects on liver, kidney and pancreas of enzymatic-and acidic-hydrolysis of polysaccharides by spent mushroom compost (hypsizigusmarmoreus). Sci Rep. 2017;24:1–2.
  • Inoue A, Kodama N, Nanba H. Effect of maitake (Grifola frondosa) D-fraction on the control of the T lymph node Th-1/Th-2 proportion . Biol Pharm Bull. 2002;25(4):536–540.
  • Vitak T, Yurkiv B, Wasser S, et al. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes. 2017;8(5):187–201.
  • Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019;10(2):63–89.
  • Baillargeon J, Platz EA, Rose DP, et al. Obesity, adipokines, and prostate cancer in a prospective population-based study. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1331–1335.
  • Hickman ES, Moroni MC, Helin K. The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev. 2002;12(1):60–66.
  • Jiang J, Slivova V, Harvey K, et al. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling . Nutr Cancer. 2004;49(2):209–216.
  • Lu QY, Jin YS, Zhang Q, et al. Ganoderma lucidum extracts inhibit growth and induce actin polymerization in bladder cancer cells in vitro. Cancer Lett. 2004;216(1):9–20.
  • Cui J, Chisti Y. Polysaccharopeptides of coriolusversicolor: physiological activity, uses, and production. Biotechnol Adv. 2003;21(2):109–122.
  • Chang Y, Zhang M, Jiang Y, et al. Preclinical and clinical studies of coriolusversicolorpolysaccharopeptide as an immunotherapeutic in China. Discov Med. 2017;23(127):207–219.
  • Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–1823.
  • Jiang J, Thyagarajan-Sahu A, Loganathan J, et al. BreastDefend™ prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncol Rep. 2012;28(4):1139–1145.
  • Handa N, Yamada T, Tanaka R. An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry. 2010;71(14–15):1774–1779.
  • Lee KR, Lee JS, Kim YR, et al. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-κB signaling pathway . Oncol Rep. 2014;31(5):2447–2453.
  • Zhang X, Bao C, Zhang J. Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of β-catenin signaling. Biomed Pharmacother. 2018;99:142–150.
  • Yue GG, Fung KP, Tse GM, et al. Comparative studies of various Ganoderma species and their different parts with regard to their antitumor and immunomodulating activities in vitro. J Altern Complement Med. 2006;12(8):777–789.
  • Suárez-Arroyo IJ, Rios-Fuller TJ, Feliz-Mosquea YR, et al. Ganoderma lucidum combined with the EGFR tyrosine kinase inhibitor, erlotinib synergize to reduce inflammatory breast cancer progression. J Cancer. 2016;7(5):500–511.
  • Grienke U, Zöll M, Peintner U, et al. European medicinal polypores – a modern view on traditional uses. J Ethnopharmacol. 2014;154(3):564–583.
  • Stamets PE. U. Patent no. 8,765,138. Washington, DC: U.S.: Patent and Trademark Office; 2014.
  • Wu HT, Lu FH, Su YC, et al. In vivo and in vitro anti-tumor effects of fungal extracts. Molecules. 2014;19(2):2546–2556.
  • Liao CH, Hsiao YM, Lin CH, et al. Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from Ganoderma tsugae. Food Chem Toxicol. 2008;46(5):1851–1859.
  • Wang H, Ng TB, Ooi VE. Lectins from mushrooms. Mycol Res. 1998;102(8):897–906.
  • Wang PW, Hung YC, Li WT, et al. Systematic revelation of the protective effect and mechanism of Cordycep sinensis on diethylnitrosamine-induced rat hepatocellular carcinoma with proteomics. Oncotarget. 2016;7(37):60270–60289.
  • Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1–5.
  • Taki H, Ohishi K, Okano A, et al. Antimetastatic effect of lentinan on liver metastasis of Colon carcinoma (colon26): possible role of activated Kupffer cells. Int J Immunother. 1995;11:29–38.
  • Yu CC, Chiang PC, Lu PH, et al. Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells. J Nutr Biochem. 2012;23(8):900–907.
  • Wong JH, Wang HX, Ng TB. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol. 2008;81(4):669–674.
  • Kim SP, Kang MY, Kim JH, et al. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J Agric Food Chem. 2011;59(18):9861–9869.
  • Milovanović I, Stajić M, Ćilerdžić J, et al. Antioxidant, antifungal and anticancer activities of se-enriched Pleurotus spp. mycelium extracts. Arch Biol Sci. 2014;66:1379–1388.
  • Fortes RC, Novaes MR, Recôva VL, et al. Immunological, hematological, and glycemia effects of dietary supplementation with agaricussylvaticus on patients’ colorectal cancer. Exp Biol Med. 2009;234(1):53–62.
  • Ciulla M, Marinelli L, Cacciatore I, et al. Role of dietary supplements in the management of parkinson’s disease. Biomolecules. 2019;9:271.
  • Kozarski M, Klaus A, Jakovljevic D, et al. Antioxidants of edible mushrooms. Molecules. 2015;20(10):19489–19525.
  • Zhang R, Xu S, Cai Y, et al. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evid Based Complement Alternat Med. 2011;2011:156810.
  • Aaseth J, Dusek P, Roos PM. Prevention of progression in Parkinson’s disease. Biometals. 2018;31(5):737–747.
  • Venkateshgobi V, Rajasankar S, Johnson WMS, et al. Neuroprotective effect of agaricusblazei extract against rotenone-induced motor and nonmotor symptoms in experimental model of Parkinson’s disease. Int J nutr Pharmacol Neurol Diseases. 2018;8:59.
  • Birla H, Rai SN, Singh SS, et al. Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. Neuromolecular Med. 2019;21(1):42–53.
  • Rai SN, Birla H, Singh SS, et al. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson’s disease through NF-κB/pAKT signaling pathways. Front Aging Neurosci. 2017;9:421.
  • Rai SN, Birla H, Zahra W, et al. Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp). J Chem Neuroanat. 2017;85:27–35.
  • Prakash J, Chouhan S, Yadav SK, et al. Withania somnifera alleviates Parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res. 2014;39(12):2527–2536.
  • Rai SN, Yadav SK, Singh D, et al. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced arkinsonian mouse model. J Chem Neuroanat. 2016;71:41–49.
  • Rai SN, Zahra W, Singh SS, et al. Anti-inflammatory activity of ursolic acid in MPTP-Induced Parkinsonian mouse model. Neurotox Res. 2019;36(3):452–462.
  • Zahra W, Rai SN, Birla H, et al. Neuroprotection of rotenone-induced Parkinsonism by ursolic acid in PD mouse model. CNS Neurol Disord Drug Targets. 2020;19(7):527–540.
  • Singh SS, Rai SN, Birla H, et al. Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a Parkinsonian mouse model. Oxid Med Cell Longev. 2020;2020:6571484.
  • Singh SS, Rai SN, Birla H, et al. Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol. 2018;9:757.
  • Salinaro AT, Pennisi M, Di Paola R, et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing. 2018;15:1–8.
  • Zhang J, An S, Hu W, et al. The neuroprotective properties of hericiumerinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer’s disease mouse model. Int J Mol Sci. 2016;17:1810.
  • Trovato A, Pennisi M, Crupi R, et al. Neuroinflammation and mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease: modulation by CoriolusVersicolor (Yun-Zhi) nutritional mushroom. J NeurolNeuromed. 2017;2:19–28.
  • Chaudhari KS, Tiwari NR, Tiwari RR. Neurocognitive effect of nootropic drug brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci. 2017;24(2):111–122.
  • Mahaman YAR, Huang F, Wu M, et al. Moringa oleifera alleviates homocysteine-induced alzheimer’s disease-like pathology and cognitive impairments. J Alzheimers Dis. 2018;63(3):1141–1159.
  • Mehla J, Gupta P, Pahuja M, et al. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sci. 2020;10:964.
  • Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA. 2012;109(9):3510–3515.
  • Kushairi N, Tarmizi NA, Phan CW, et al. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer’s disease. Trends Food Sci Technol. 2020;104:153–162.
  • Yang EJ, Song KS. Polyozellin, a key constituent of the edible mushroom Polyozellus multiplex, attenuates glutamate-induced mouse hippocampal neuronal HT22 cell death. Food Funct. 2015;6(12):3678–3686.
  • Li L, Wu G, Choi BY, et al. A mushroom extract piwep from phellinusigniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord. Bio Med Res Int. 2014;2014:218274.
  • Larson-Nath C, Goday P. Malnutrition in children with chronic disease. Nutr Clin Pract. 2019;34(3):349–358.
  • [Cited 2020 Oct 22]. https://www.Who.Int/Gho/Child-Malnutrition/En/
  • Feeney MJ, Dwyer J, Hasler-Lewis CM, et al. Mushrooms and health summit proceedings. J Nutr. 2014;144(7):1128S–1136S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.