632
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform

ORCID Icon, ORCID Icon & ORCID Icon
Pages 873-891 | Received 28 Jan 2021, Accepted 19 Jul 2021, Published online: 16 Sep 2021

References

  • Callegari A, Bolognesi S, Cecconet D, et al. Production technologies, current role, and future prospects of biofuels feedstocks: a state-of-the-art review. Critical Rev Environ Sci Technol. 2020;50(4):384–436.
  • Arevalo-Gallegos A, Ahmad Z, Asgher M, et al. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach: a review. Int J Biol Macromol. 2017;99:308–318.
  • Zhao Y, Shakeel U, Rehman MS, et al. Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. J Clean Prod. 2020;253:120076.
  • Yoo CG, Meng X, Pu Y, et al. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour Technol. 2020;301:122784.
  • Vu HP, Nguyen LN, Vu MT, et al. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci Total Environ. 2020;743:140630.
  • Garlapati VK, Chandel AK, Kumar SJ, et al. Circular economy aspects of lignin: towards a lignocellulosic biorefinery. Renew Sustain Energ Reviews. 2020;130:10997.
  • Dahmen N, Lewandowski I, Zibek S, et al. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. GCB Bioenerg. 2019;11(1):107–117.
  • Parakh PD, Nanda S, Kozinski JA. Eco-friendly transformation of waste biomass to biofuels. Curr Biochem Engg. 2020;6(2):120–134.
  • Chen HZ, Liu ZH. Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci. 2017;17(5):489–499.
  • da Silva AS, Espinheira RP, Teixeira RS, et al. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol Biofuels. 2020;13:58.
  • Fahmy M, Sohel MI, Vaidya AA, et al. Does sugar yield drive lignocellulosic sugar cost? Case study for enzymatic hydrolysis of softwood with added polyethylene glycol. Proc Biochem. 2019;80:103–111.
  • Valdivia M, Galan JL, Laffarga J, etal. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol. 2016;9(5):585–594.
  • Hodge DB, Karim MN, Schell DJ, et al. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol. 2009;152(1):88–107.
  • Althuri A, Chintagunta AD, Sherpa KC, et al. Simultaneous saccharification and fermentation of lignocellulosic biomass. In: Kumar S., Sani R. editors. Biorefining of biomass to biofuels. Biofuel and biorefinery technologies, Vol 4. Cham: Springer; 2020.
  • McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot. 2015;6:4109–4118.
  • Petridis L, Smith JC. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem. 2018;2(11):382–389.
  • Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohyd Poly. 2015;117:624–631.
  • Xu H, Li B, Mu X. Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res. 2016;55(32):8691–8705.
  • Patiño MA, Ortiz JP, Velásquez M, et al. D-Xylose consumption by non-recombinant Saccharomyces cerevisiae: a review. Yeast. 2019;36(9):541–556.
  • Vinuselvi P, Kim MK, Lee SK, et al. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep. 2012;45(2):9–70.
  • Yao K, Wu Q, An R, et al. Hydrothermal pretreatment for deconstruction of plant cell wall: part I. Effect on lignin-carbohydrate complex. AIChE J. 2018;64(6):1938–1953.
  • Shinde SD, Meng X, Kumar R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20(10):2192–2205.
  • Tu WC, Hallett JP. Recent advances in the pretreatment of lignocellulosic biomass. Current Opin Green Sus Chem. 2019;20:11–17.
  • Zhang Y, Liu YY, Xu JL, et al. High solid and low enzyme loading based saccharification of agricultural biomass. BioResources. 2012;7(1):0345–0353.
  • Liu Y, Xu J, Zhang Y, et al. Optimisation of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes. J Biotechnol. 2015;211:5–9.
  • Gao Y, Xu J, Yuan Z, et al. Optimisation of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresour Technol. 2014;167:41–45.
  • Gao Y, Xu J, Yuan Z, et al. Ethanol production from high solids loading of alkali-pretreated sugarcane bagasse with an SSF process. BioResources. 2014;9(2):3466–3479.
  • Gao Y, Xu J, Yuan Z, et al. Ethanol production from sugarcane bagasse by fed-batch simultaneous saccharification and fermentation at high solids loading. Energy Sci Eng. 2018;6(6):810–818.
  • Baral P, Munagala M, Shastri Y, et al. Cost reduction approaches for fermentable sugar production from sugarcane bagasse and its impact on techno-economics and the environment. Cellulose. 2021;28(10):6305–6322.
  • Molaverdi M, Karimi K, Mirmohamadsadeghi S, et al. High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energ Convers Manag. 2019;182:520–529.
  • Dunaway KW, Dasari RK, Bennett NG, et al. Characterisation of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresour Technol. 2010;101(10):3575–3582.
  • Zhu JY, Gleisner R, Scott CT, et al. High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments. Bioresour Technol. 2011;102(19):8921–8929.
  • Ahmed IN, Nguyen PLT, Huynh LH, et al. Bioethanol production from pretreated Melaleuca leucadendron shedding bark-simultaneous saccharification and fermentation at high solid loading. Bioresour Technol. 2013;136:213–221.
  • Pratto B, dos Santos-Rocha MS, Longati AA, et al. Experimental optimisation and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. Bioresour Technol. 2020;297:122494.
  • Kalyani DC, Zamanzadeh M, Müller G, et al. Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion. Appl Energ. 2017;193:210–219.
  • Athmanathan A, Fallahi P, Lash T, et al. A demonstration of the consistency of Maize stover pretreatment by soaking in aqueous ammonia from bench to pilot-scale. Bioenerg Res. 2019;12(1):68–80.
  • Ouyang S, Qiao H, Xu Q, et al. Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production. Cellulose. 2019;26(15):8513–8524.
  • Godoy CM, Machado DL, da Costa AC. Batch and fed-batch enzymatic hydrolysis of pretreated sugarcane bagasse–assays and modeling. Fuel. 2019;253:392–399.
  • Pereira B, Arantes V. Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Indus Crops Prod. 2020;152:112377.
  • Liu G, Zhang Q, Li H, et al. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnol Bioeng. 2018;115(1):60–69.
  • Hou W, Kan J, Bao J. Rheology evolution of high solids content and highly viscous lignocellulose system in biorefinery fermentations for production of biofuels and biochemicals. Fuel. 2019;253:1565–1569.
  • Qiu J, Tian D, Shen F, et al. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol. 2018;268:355–362.
  • Wang Z, Ning P, Hu L, et al. Efficient ethanol production from paper mulberry pretreated at high solid loading in fed-nonisothermal-simultaneous saccharification and fermentation. Renew Energ. 2020;160:211–219.
  • Zhang T, Zhu MJ. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse. Bioresour Technol. 2017;229:204–210.
  • Sousa L, Jin M, Chundawat SP, et al. Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy Environ Sci. 2016;9(4):1215–1223.
  • Chen X, Shekiro J, Pschorn T, et al. A highly efficient dilute alkali deacetylation and mechanical (disc) refining process for the conversion of renewable biomass to lower cost sugars. Biotechnol Biofuels. 2014;7(1):98.
  • Chen X, Crawford N, Wang W, et al. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L−1) during enzymatic hydrolysis and high ethanol concentrations (> 10% v/v) during fermentation without hydrolysate purification or concentration. Energ Environ Sci. 2016;9:1237–1245.
  • Zhao X, Liu D. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility-the Formiline process. Bioresour Technol. 2012;117:25–32.
  • Zhao X, Dong L, Chen L, et al. Batch and multi-step fed-batch enzymatic saccharification of formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers. Bioresour Technol. 2013;135:350–356.
  • Gong Z, Wang X, Yuan W, et al. Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnol Biofuels. 2020;13:13.
  • Tang S, Dong Q, Fang Z, et al. High-concentrated substrate enzymatic hydrolysis of pretreated rice straw with glycerol and aluminum chloride at low cellulase loadings. Bioresour Technol. 2019;294:122164.
  • Cai CM, Zhang T, Kumar R, et al. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 2013;15(11):3140–3145.
  • Nguyen TY, Cai CM, Kumar R, et al. Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci USA. 2017;114(44):11673–11678.
  • Kalogiannis KG, Matsakas L, Aspden J, et al. Acid assisted organosolv delignification of beechwood and pulp conversion towards high concentrated cellulosic ethanol via high gravity enzymatic hydrolysis and fermentation. Molecules. 2018;23(7):1647.
  • Shuai L, Questell-Santiago YM, Luterbacher JS. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chem. 2016;18(4):937–943.
  • Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities. Biotechnol Adv. 2018;36(8):2032–2050.
  • Qin L, Zhao X, Li WC, et al. Process analysis and optimisation of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol biofuels. 2018;11:110.
  • Zhu JQ, Zong QJ, Li WC, et al. Temperature profiled simultaneous saccharification and co-fermentation of corn stover increases ethanol production at high solid loading. Energ Convers Managmt. 2020;205:112344.
  • Li T, Fang Q, Chen H, et al. Solvent-based delignification and decrystallisation of wheat straw for efficient enzymatic hydrolysis of cellulose and ethanol production with low cellulase loadings. RSC Adv. 2017;7(17):10609–10617.
  • Yao F, Shen F, Wan X, et al. High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis. Renew Sust Energ Rev. 2020;132:110107.
  • Chen Z, Jacoby WA, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. Bioresour Technol. 2019;279:281–286.
  • Chen X, Crawford N, Wang W, et al. Kinetics and rheological behavior of higher solid (solids> 20%) enzymatic hydrolysis reactions using dilute acid pretreated, deacetylation and disk refined, and deacetylation and mechanical refined (DMR) corn stover slurries. ACS Sustainable Chem Eng. 2019;7(1):1633–1641.
  • Al-Azkawi A, Al-Battashi H, Sivakumar N, et al. Nonionic surfactants for enhancement of lignocellulose enzymatic hydrolysis. In: Gupta VK, Treichel H, Kuhad RC, Couto SR, editors. Recent developments in bioenergy research. Amsterdam: Elsevier; 2020. p. 225–236.
  • Eriksson T, Börjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol. 2002;31(3):353–364.
  • Lou H, Zeng M, Hu Q, et al. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresour Technol. 2018;249:1–8.
  • Cannella D, Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111(1):59–68.
  • Zhu JQ, Qin L, Li BZ, et al. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Bioresour Technol. 2014;169:9–18.
  • Agrawal R, Bhadana B, Mathur AS, et al. Improved enzymatic hydrolysis of pilot scale pretreated rice straw at high total solids loading. Front Energy Res. 2018;6:115.
  • Zhou H, Lou H, Yang D, et al. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin indus. Ind Eng Chem Res. 2013;52(25):8464–8470.
  • Liu Y, Yu Q, Xu J, et al. Evaluation of structural factors affecting high solids enzymatic saccharification of alkali-pretreated sugarcane bagasse. Cellulose. 2020;27(3):1441–1450.
  • Brondi MG, Elias AM, Furlan FF, et al. Performance targets defined by retro-techno-economic analysis for the use of soybean protein as saccharification additive in an integrated biorefinery. Sci Rep. 2020;10(1):1–13.
  • Srivastava N, Rathour R, Jha S, et al. Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application. Biomolecules. 2019;9(6):220.
  • Lopes AM, Ferreira Filho EX, Moreira LR. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol. 2018;125(3):632–645.
  • Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess. 2019;6(1):40.
  • Beeson WT, Phillips CM, Cate JH, et al. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2012;134(2):890–892.
  • Hu J, Arantes V, Pribowo A, et al. Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass. Energ Environ Sci. 2014;7(7):2308–2315.
  • Mukasekuru MR, Hu J, Zhao X, et al. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustainable Chem Eng. 2018;6(10):12787–12796.
  • Bals BD, Gunawan C, Moore J, et al. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings. Biotechnol Bioeng. 2014;111(2):264–271.
  • Zhou J, Ouyang J, Xu Q, etal. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17. Bioresour Technol. 2016;222:431–438.
  • Liu Y, Cao Y, Yu Q, et al. Enhanced sugars production with high conversion efficiency from alkali-pretreated sugarcane bagasse by enzymatic mixtures. BioResources. 2020;15(2):3839–3849.
  • Ouyang J, Ma R, Huang W, et al. Enhanced saccharification of SO2catalyzed steam-exploded corn stover by polyethylene glycol addition. Biomass Bioenerg. 2011;35(5):2053–2058.
  • Xu C, Zhang J, Zhang Y, et al. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresour Technol. 2019;292:121993.
  • Liu J, Cai Y, Liu L, et al. Enhanced lactic acid production by Bacillus coagulans through simultaneous saccharification, biodetoxification, and fermentation. Biofuels, Bioprod Bioref. 2020;14(3):533–543.
  • Mukasekuru MR, Kaneza P, Sun H, et al. Fed-batch high-solids enzymatic saccharification of lignocellulosic substrates with a combination of additives and accessory enzymes. Ind Crops Prod. 2020;146:112156.
  • Long L, Yang H, Ren H, et al. Synergism of recombinant Podosporaanserina Pa AA9B with cellulases containing AA9s can boost the enzymatic hydrolysis of cellulosic substrates. ACS Sustainable Chem Eng. 2020;8(32):11986–11993.
  • Bissaro B, Røhr ÅK, Müller G, et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol. 2017;13(10):1123–1128.
  • Costa TH, Kadic’ A, Chylenski P, et al. Demonstration-scale enzymatic saccharification of sulphite-pulped spruce with addition of hydrogen peroxide for LPMO activation. Biofuels, Bioprod Bioref. 2020;14(4):734–745.
  • Du J, Zhang F, Li Y, et al. Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng. 2014;37(2):173–181.
  • Jung YH, Park HM, Kim DH, et al. Fed-batch enzymatic saccharification of high solids pretreated lignocellulose for obtaining high titers and high yields of glucose. Appl Biochem Biotechnol. 2017;18:1108–1120.
  • Katsimpouras C, Christakopoulos P, Topakas E. Acetic acid-catalysed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess Biosyst Eng. 2016;39(9):1415–1423.
  • Liu ZH, Chen HZ. Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass Bioenerg. 2016;93:13–24.
  • Jørgensen H, Pinelo M. Enzyme recycling in lignocellulosic biorefineries. Biofuels, Bioprod Bioref. 2017;11(1):150–1567.
  • Alftrén J, Hobley T. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling. Biomass Bioenerg. 2014;65:72–78.
  • Baral P, Jain L, Kurmi AK, et al. Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: a case study of Cellic CTec2 with recycling and reuse. Bioprocess Biosyst Eng. 2020;43(3):473–482.
  • Xin D, Yang M, Chen X, et al. Improving cellulase recycling efficiency by decreasing the inhibitory effect of unhydrolysed solid on recycled corn stover saccharification. Renew Energ. 2020;145:215–221.
  • Jin M, Liu Y, da Costa Sousa L, et al. Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover. Biotechnol Bioeng. 2017;114(8):1713–1720.
  • Zheng T, Lei F, Li P, et al. Stimulatory effects of rhamnolipid on corncob residues ethanol production via high-solids simultaneous saccharification and fermentation. Fuel. 2019;257:116091.
  • Zheng T, Yu H, Liu S, et al. Achieving high ethanol yield by co-feeding corncob residues and tea-seed cake at high-solids simultaneous saccharification and fermentation. Renew Energ. 2020;145:858–866.
  • Lu M, Li J, Han L, et al. High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. Biotechnol Biofuel. 2020;13:1–1.
  • Nalawade K, Baral P, Patil S, et al. Evaluation of alternative strategies for generating fermentable sugars from high-solids alkali pretreated sugarcane bagasse and successive valorisation to L (+) lactic acid. Renew Energ. 2020;157:708–717.
  • Baral P, Pundir A, Kumar V, et al. Expeditious production of concentrated glucose-rich hydrolysate from sugarcane bagasse and its fermentation to lactic acid with high productivity. Food Bioprod Process. 2020;124:72–81.
  • Nwamba MC, Song G, Sun F, et al. Efficiency enhancement of a new cellulase cocktail at low enzyme loading for high solid digestion of alkali catalyzed atmospheric glycerol organosolvent pre-treated sugarcane bagasse. Bioresour Technol. 2021;338:125505.
  • Zheng P, Fang L, Xu Y, et al. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol. 2010;101(20):7889–7894.
  • Akhtar J, Hassan N, Idris A, et al. Optimisation of simultaneous saccharification and fermentation process conditions for the production of succinic acid from oil palm empty fruit bunches. J Wood Chem Techno. 2020;40(2):136–145.
  • Li X, Zhou J, Ouyang S, et al. Fumaric acid production from alkali-pretreated corncob by fed-batch simultaneous saccharification and fermentation combined with separated hydrolysis and fermentation at high solids loading. Appl Biochem Biotechnol. 2017;181(2):573–583.
  • Zhang CY, Peng XP, Li W, et al. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue. Biotechnol Appl Biochem. 2014;61(5):501–509.
  • Jin C, Huang Z, Bao J. High-Titer glutamic acid production from lignocellulose using an engineered Corynebacterium glutamicum with simultaneous co-utilisation of xylose and glucose. ACS Sustainable Chem Eng. 2020;8(16):6315–6322.
  • Champreda V, Mhuantong W, Lekakarn H, et al. Designing cellulolytic enzyme systems for biorefinery: from nature to application. J Biosci Bioeng. 2019;128(6):637–654.
  • Houfani AA, Anders N, Spiess AC, et al. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars: a review. Biomass Bioenerg. 2020;134:105481.
  • Liu YJ, Li B, Feng Y, et al. Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol Advan. 2020;40:107535.
  • Olguin-Maciel E, Singh A, Chable-Villacis R, et al. Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: an overview. Agronomy. 2020;10(11):1834.
  • Dragone G, Kerssemakers AA, Driessen JL, et al. Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol. 2020;302:122847.
  • Siqueira JG, Rodrigues C, de Souza Vandenberghe LP, et al. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: a review. Biomass Bioenerg. 2020;132:105419.
  • Jain L, Agrawal D. Biofuel cellulases: diversity, distribution and industrial outlook. In: Microbial fermentation and enzyme technology. Boca Raton: CRC Press; 2020. p. 283–298.
  • Gubicza K, Nieves IU, Sagues WJ, et al. Techno-economic analysis of ethanol production from sugarcane bagasse using a liquefaction plus simultaneous saccharification and co-Fermentation process. Bioresour Technol. 2016;208:42–48.
  • Mandegari MA, Farzad S, van Rensburg E, et al. Multi-criteria analysis of a biorefinery for co-production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioprod Bioref. 2017;11(6):971–990.
  • van Rijn R, Nieves IU, Shanmugam KT, et al. Techno-economic evaluation of cellulosic ethanol production based on pilot biorefinery data: a case study of sweet sorghum bagasse processed via L. + SScF. Bioenerg Res. 2018;11(2):414–425.
  • Marks C, König A, Mitsos A, et al. Minimal viable sugar yield of biomass pretreatment. Biofuels, Bioprod Bioref. 2020;14(2):301–314.
  • Kuo PC, Yu J. Process simulation and techno-economic analysis for production of industrial sugars from lignocellulosic biomass. Ind Crops Prod. 2020;155:112783.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.