1,359
Views
27
CrossRef citations to date
0
Altmetric
Review Articles

Plant response to silver nanoparticles: a critical review

&
Pages 973-990 | Received 16 Feb 2021, Accepted 21 Jul 2021, Published online: 14 Sep 2021

References

  • Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018;16(1):14.
  • He X, Deng H, Hwang H, min, et al. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2019;27(1):1–21.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385–406.
  • Castillo-Henríquez L, Alfaro-Aguilar K, Ugalde-Álvarez J, et al. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10(9):1–24.
  • Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci. 2020;10(5):1369–1378.
  • Durán N, Marcato PD, De Souza GIH, et al. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol. 2007;3(2):203–208.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
  • Ahamed M, Posgai R, Gorey TJ, et al. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010;242(3):263–269.
  • Quang Huy T, Quy N, Van Anh-Tuan L. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 4:33001.
  • Pandian AMK, Karthikeyan C, Rajasimman M, et al. Synthesis of silver nanoparticle and its application. Ecotoxicol Environ Saf. 2015;121:211–217.
  • Zhang C, Hu Z, Li P, et al. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment. Sci Total Environ. 2016;572:852–873.
  • Pallavi Mehta CM, Srivastava R, et al. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech. 2016;6:254.
  • Yin L, Colman BP, McGill BM, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One. 2012;7(10):e47674.
  • Ma C, White JC, Dhankher OP, et al. Metal-Based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol. 2015;49(12):7109–7122.
  • Siddiqi KS, Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett. 2016;11(1):400.
  • Siddiqi KS, Husen A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett. 2017;12(1):92.
  • Husen A, Siddiqi KS. Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol. 2014;12:16. [Online] BioMed Central Ltd.
  • Geisler-Lee J, Wang Q, Yao Y, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013;7(3):323–337.
  • Yan A, Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci. 2019;20(5):1003.
  • Rani PU, Yasur J, Loke KS, et al. Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (mart) solms. Acta Physiol Plant. 2016;38(2):1–9.
  • Mohamed AKSH, Qayyum MF, Abdel-Hadi AM, et al. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Arch Agron Soil Sci. 2017;63(12):1736–1747.
  • Tomacheski D, Pittol M, Simões DN, et al. Impact of silver ions and silver nanoparticles on the plant growth and soil microorganisms. Glob J Environ Sci Manag. 2017;3(4):341–350.
  • Qian H, Peng X, Han X, et al. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci (China). 2013;25(9):1947–1956.
  • Sosan A, Svistunenko D, Straltsova D, et al. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J. 2016;85(2):245–257.
  • Vinković T, Štolfa-Čamagajevac I, Tkalec M, et al. Does plant growing condition affects biodistribution and biological effects of silver nanoparticles? Spanish J Agric Res. 2018;16(4):1–13.
  • Abbas Q, Liu G, Yousaf B, et al. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environ Pollut. 2019;250:728–736.
  • Khan I, Raza MA, Awan SA, et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem. 2020;156:221–232.
  • Aleksandrowicz-Trzcinska M, Szaniawski A, Studnicki M, et al. The effect of silver and copper nanoparticles on the growth and mycorrhizal colonisation of scots pine (Pinus sylvestrisL.) in a container nursery experiment. iForest. 2018;11(5):690–697.
  • Al-Huqail AA, Hatata MM, Al-Huqail AA, et al. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J Biol Sci. 2018;25(2):313–319.
  • Rui M, Ma C, Tang X, et al. Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustainable Chem Eng. 2017;5(8):6557–6567.
  • Nair PMG, Chung IM. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere. 2014;112:105–113.
  • Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43(24):9473–9479.
  • Amooaghaie R, Tabatabaei F, Ahadi A. M. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf. 2015;113:259–270.
  • Gubbins EJ, Batty LC, Lead JR. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut. 2011;159(6):1551–1559.
  • Lee WM, Kwak J, Il, An YJ. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere. 2012;86(5):491–499.
  • Yin L, Cheng Y, Espinasse B, et al. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol. 2011;45(6):2360–2367.
  • Ejaz M, Raja NI, Mashwani ZUR, et al. Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress. IET Nanobiotechnol. 2018;12(7):927–932.
  • Yang J, Jiang F, Ma C, et al. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem. 2018;66(11):2589–2597.
  • Mustafa G, Hasan M, Yamaguchi H, et al. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J Proteomics Epub. 2020;224:103833.
  • Soliman M, Qari SH, Abu-Elsaoud A, et al. Rapid green synthesis of silver nanoparticles from blue gum augment growth and performance of maize, fenugreek, and onion by modulating plants cellular antioxidant machinery and genes expression. Acta Physiol Plant. 2020;42(9):148.
  • Zhang H, Chen S, Jia X, et al. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci Total Environ. 2021;752:142264.
  • Acharya P, Jayaprakasha GK, Crosby KM, et al. Green-Synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustainable Chem Eng. 2019;7(17):14580–14590.
  • Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–13619.
  • Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res. 2008;10(4):691–695.
  • Li X, Schirmer K, Bernard L, et al. Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano. 2015;2(6):594–602.
  • Sharma P, Bhatt D, Zaidi MGH, et al. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol. 2012;167(8):2225–2233.
  • Jin T, Zhang H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci. 2008;73(3):M127–34.
  • Neal AL. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology. 2008;17(5):362–371.
  • Blaser SA, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008;390(2-3):396–409.
  • Bradford A, Handy RD, Readman JW, et al. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol. 2009;43(12):4530–4536.
  • Colman BP, Wang SY, Auffan M, et al. Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicology. 2012;21(7):1867–1877.
  • M van der Z, Peters RJB, Peijnenburg AA, et al. Biodistribution and toxicity of silver nanoparticles in rats after subchronic oral administration. Toxicol Lett. 2011;205:S289.
  • Ma J, Lü X, Huang Y. Genomic analysis of cytotoxicity response to nanosilver in human dermal fibroblasts. J Biomed Nanotechnol. 2011;7(2):263–275.
  • Miao AJ, Schwehr KA, Xu C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut. 2009;157(11):3034–3041.
  • Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42(23):8959–8964.
  • Asharani PV, Lian Wu Y, Gong Z, et al. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102.
  • Kim J, Kim S, Lee S. Differentiation of the toxicities of silver nanoparticles and silver ions to the japanese medaka (Oryzias latipes) and the cladoceran daphnia magna. Nanotoxicology. 2011;5(2):208–214.
  • Jiang HS, Li M, Chang FY, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem. 2012;31(8):1880–1886.
  • Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in allium cepa. Sci Total Environ. 2009;407(19):5243–5246.
  • Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics. 2011;3(6):628–632.
  • Haverkamp RG, Marshall AT. The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res. 2009;11(6):1453–1463.
  • Dimkpa CO, McLean JE, Martineau N, et al. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol. 2013;47(2):1082–1090.
  • Badawy AE, Luxton TP, Silva RG, et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 2010;44(4):1260–1266.
  • Prathna TC, Chandrasekaran N, Mukherjee A. Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: effect of surface functionalization and matrix composition. Colloids Surfaces A Physicochem Eng Asp. 2011;390(1-3):216–224.
  • Badawy AE, Silva RG, Morris B, et al. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–287.
  • Fabrega J, Fawcett SR, Renshaw JC, et al. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol. 2009;43(19):7285–7290.
  • Dimkpa CO, Calder A, Gajjar P, et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater. 2011;188(1-3):428–435.
  • McQuillan JS, Groenaga Infante H, Stokes E, et al. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology. 2012;6(8):857–866.
  • Dimkpa CO, McLean JE, Britt DW, et al. Nanospecific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol. 2012;25(5):1066–1074.
  • Kumari MVR, Hiramatsu M, Ebadi M. Free radical scavenging actions of metallothionein isoforms I and II. Free Radic Res. 1998;29(2):93–101.
  • Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot. 2003;54(391):2285–2292.
  • Latasa M, Berdalet E. Effect of nitrogen or phosphorus starvation on pigment composition of cultured heterocapsa sp. J Plankton Res. 1994;16(1):83–94.
  • Hou W, Chen X, Song G, et al. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem. 2007;45(1):62–69.
  • Kanoun-Boulé M, Vicente JAF, Nabais C, et al. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol. 2009;91(1):1–9.
  • Thuesombat P, Hannongbua S, Akasit S, et al. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf. 2014;104(1):302–309.
  • Anjum NA, Gill SS, Duarte AC, et al. Silver nanoparticles in soil-plant systems. J Nanopart Res. 2013;15(1896):1–26.
  • Baskar V, Venkatesh J, Park SW. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis. Environ Sci Pollut Res Int. 2015;22(22):17672–17682.
  • Koul KK, Nagpal R, Raina SN. Seed coat microsculpturing in Brassica and allied genera (subtribes brassicinae, raphaninae, moricandiinae). Ann Bot. 2000;86(2):385–397.
  • Zuverza-Mena N, Armendariz R, Peralta-Videa JR, et al. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci Frontiers Media S.A. 2016;7(FEB2016):90.
  • Larue C, Castillo-Michel H, Sobanska S, et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater. 2014;264:98–106.
  • Ma X, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408(16):3053–3061.
  • Lee WM, An YJ, Yoon H, et al. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem. 2008;27(9):1915–1921.
  • Seif Sahandi M, Sorooshzadeh A, Rezazadeh HS, et al. Effect of nano silver and silver nitrate on seed yield of borage. J Med Plants Res. 2011;5(5):706–710.
  • Jasim B, Thomas R, Mathew J, et al. Plant growth and diosgenin enhancement effect of silver nanoparticles in fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J. 2017;25(3):443–447.
  • Li P, Mao Z, Lou J, et al. Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17. Molecules. 2011;16(12):10631–10644.
  • Syu Y. y, Hung JH, Chen JC, et al. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem. 2014;83:57–64.
  • Geisler-Lee J, Brooks M, Gerfen J, et al. Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials (Basel). 2014;4(2):301–318.
  • Dornbos DL, Jr., Mullen RE. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Can J Plant Sci. 1991;71(2):373–383.
  • Author C, Ahmadi M, Ahmadi M, et al. Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. Env Sci. 2009;5(6):755–761.
  • Thuzar M, Puteh AB, Abdullah NAP, et al. The effects of temperature stress on the quality and yield of soya bean [(Glycine max L.) merrill.]. J Agric Sci. 2010;2(1):172–179.
  • Hischemöller A, Nordmann J, Ptacek P, et al. In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol. 2009;5(3):278–284.
  • Steinitz B, Barr N, Tabib Y, et al. Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep. 2010;29(11):1315–1323.
  • Gj De K, W Van Der K, Jc De J. The formation of adventitious roots: new concepts, new possibilities. In: In vitro cellular and developmental biology - plant. 1999;35:189–199.
  • Scheckel KG, Luxton TP, Badawy AE, et al. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environ Sci Technol. 2010;44(4):1307–1312.
  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, et al. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci Soc Am J. 2011;75(2):365–377.
  • Ratte HT. Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem. 1999;18(1):89–108.
  • Fortin C, Campbell PGC. Thiosulfate enhances silver uptake by a green alga: role of anion transporters in metal uptake. Environ Sci Technol. 2001;35(11):2214–2218.
  • Kaveh R, Li YS, Ranjbar S, et al. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;47(18):10637–10644.
  • Dewez D, Oukarroum A. Silver nanoparticles toxicity effect on photosystem II photochemistry of the green alga Chlamydomonas reinhardtii treated in light and dark conditions. Toxicol Environ Chem. 2012;94(8):1536–1546.
  • Oukarroum A, Barhoumi L, Pirastru L, et al. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem. 2013;32(4):902–907.
  • Yasur J, Rani PU. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res Int. 2013;20(12):8636–8648.
  • Campbell PGC. Interactions between trace metals and aquatic organisms: a critique\rof the free-ion activity model, in: Metal speciation and bioavailability in aquatic systems. In: Tessier A, Turner DR, editors. Physicochemical kinetics and transport at biointerfaces chichester. New York (NY): John Wiley & Sons. 1995. p. 45–97.
  • Dash A, Singh AP, Chaudhary BR, et al. Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett. 2012;4(3):158–165.
  • Hutchinson TC, Stokes PM. Heavy metal toxicity and algal bioassay. In: Water quality parameters. STP 563. Am Soc Test Mat, Philadelphia. PA. 1975; p. 320–343
  • Cvjetko P, Milošić A, Domijan AM, et al. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf. 2017;137:18–28.
  • Vannini C, Domingo G, Onelli E, et al. Morphological and proteomic responses of eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One. 2013;8(7):e68752.
  • Koontz HV, Berle KL. Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiol. 1980;65(2):336–339.
  • Li CC, Dang F, Li M, et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology. 2017;11(5):699–709.
  • Torrent L, Iglesias M, Marguí E, et al. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. J Hazard Mater. 2020;384:121201.
  • Ke M, Li Y, Qu Q, et al. Offspring toxicity of silver nanoparticles to Arabidopsis thaliana flowering and floral development. J Hazard Mater. 2020;386:121975.
  • Salachna P, Byczyńska A, Zawadzińska A, et al. Stimulatory effect of silver nanoparticles on the growth and flowering of potted Oriental lilies. Agronomy. 2019;9(10):610.
  • Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent. 2019;43(1):38.
  • Gupta SD, Agarwal A, Pradhan S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol Environ Saf. 2018;161:624–633.
  • Mirzajani F, Askari H, Hamzelou S, et al. Effect of silver nanoparticles on Oryza sativa L. And its rhizosphere bacteria. Ecotoxicol Environ Saf. 2013;88:48–54.
  • Mazumdar H, Ahmed GU. Phytotoxicity effect of silver nanoparticles on oryza sativa. Int J ChemTech Res. 2011;3(3):1494–1500.
  • Mustafa G, Sakata K, Komatsu S. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteomics. 2016;148:113–125.
  • Vannini C, Domingo G, Onelli E, et al. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol. 2014;171(13):1142–1148.
  • Rastogi A, Zivcak M, Tripathi DK, et al. Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynt. 2019;57(1):209–216.
  • Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf. 2013;93:60–67.
  • Noori A, Donnelly T, Colbert J, et al. Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int J Phytoremediation. 2020;22(1):40–51.
  • Embiale A, Hussein M, Husen A, et al. Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agronomy. 2016;15(2):45–57.
  • Getnet Z, Husen A, Fetene M, et al. Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) moench} varieties-a field trial under drought-prone area in Amhara regional state. J Agronomy. 2015;14(4):188–202.
  • Husen A. Growth, chlorophyll fluorescence and biochemical markers in clonal ramets of shisham (Dalbergia sissoo Roxb) at nursery stage. New For. 2009;38(2):117–129.
  • Dewez D, Goltsev V, Kalaji HM, et al. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr Plant Biol. 2018;(16):15–21.
  • Vishwakarma K, Shweta Upadhyay N, et al. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci. 2017;8:1501.
  • Hossain Z, Mustafa G, Sakata K, et al. Insights into the proteomic response of soybean towards Al2O3, ZnO, and Ag nanoparticles stress. J Hazard Mater. 2016;(304):291–305.
  • Wang Z, Xie X, Zhao J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol. 2012;46(8):4434–4441.
  • Husen A. Effects of IBA and NAA treatments on rooting of Rauvolfia serpentina benth. ex kurz shoot cuttings. Ann For. 2003;11(1):88–93.
  • Husen A. Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments. merican J of Plant PhysiologyA. 2011;7(1):1–16.
  • Husen A. Clonal propagation of Dalbergia sissoo Roxb and associated metabolic changes during adventitious root primordium development. New Forest. 2008;36(1):13–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.