1,914
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 813-826 | Received 30 Apr 2021, Accepted 16 Aug 2021, Published online: 31 Oct 2021

References

  • Mojica FJM, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol. 2000;36(1):244–246.
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712.
  • Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–5433.
  • Jansen R, Embden J. V, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–1575.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821.
  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
  • Li Y, Peng N. Endogenous CRISPR-cas system-based genome editing and antimicrobials: review and prospects. Front Microbiol. 2019;10:2471.
  • Burby PE, Simmons LA. MutS2 promotes homologous recombination in Bacillus subtilis. J Bacteriol. 2017;199(2):e00682-16.
  • Cho S, Shin J, Cho BK. Applications of CRISPR/cas system to bacterial metabolic engineering. Int J Mol Sci. 2018;19:1089.
  • Gu Y, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng. 2018;50:109–121.
  • So Y, Park SHSY, Park EH, et al. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol. 2017;8:1167–1112.
  • Westbrook AW, Moo-Young M, Chou CP. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol. 2016;82(16):4876–4895.
  • Toymentseva AA, Altenbuchner J. New CRISPR-Cas9 vectors for genetic modifications of bacillus species. FEMS Microbiol Lett. 2019;366(1):1–18.
  • Wu Y, Liu Y, Lv X, et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol Bioeng. 2020;117(6):1817–1825.
  • Price MA, Cruz R, Bryson J, et al. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7. Biotechnol Bioeng. 2020;117(6):1805–1816.
  • Yu S, Price MA, Wang Y, et al. CRISPR-dCas9 mediated cytosine deaminase base editing in Bacillus subtilis. ACS Synth Biol. 2020;9(7):1781–1789.
  • Mohanraju P, Makarova KS, Zetsche B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016;353(6299):aad5147.
  • Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol. 2016;82(17):5421–5427.
  • Bodmer WF, Ganesan AT, Bodmer WF, Ganesan AT. Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation. Genetics. 1964;50:717–738.
  • Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep. 2016;6:27943–27911.
  • Lim H, Choi SK. Programmed gRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis. Front Microbiol. 2019;10:1140–1149.
  • Watzlawick H, Altenbuchner J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system. AMB Express. 2019;9(1):158.
  • Yi Y, Li Z, Song C, et al. Exploring plant-microbe interactions of the rhizobacteria Bacillus subtilis and Bacillus mycoides by use of the CRISPR-Cas9 system. Environ Microbiol. 2018;20(12):4245–4260.
  • Burby P, Simmons L. CRISPR/Cas9 editing of the Bacillus subtilis genome. Bio-Protocol. 2017;7:1–24.
  • Price MA, Cruz R, Baxter S, et al. CRISPR-Cas9 in situ engineering of subtilisin E in Bacillus subtilis. PLOS One. 2019;14(1):e0210121.
  • García-Moyano A, Larsen Ø, Gaykawad S, et al. Fragment exchange plasmid tools for CRISPR/Cas9-mediated gene integration and protease production in Bacillus subtilis. Appl Environ Microbiol. 2021;87:1–14.
  • Hao W, Suo F, Lin Q, et al. Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities. Front Bioeng Biotechnol. 2020;8:524676.
  • Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–771.
  • Liu D, Huang C, Guo J, et al. Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis. Biotechnol Biofuels. 2019;12:197–117.
  • Wang Y, Cheng H, Liu YY, et al. In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun. 2021;12(1):678.
  • Fontana J, Dong C, Ham JY, et al. Regulated expression of sgRNAs tunes CRISPRi in E. coli. Biotechnol J. 2018;13:e1800069.
  • Peters JM, Colavin A, Shi H, et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell. 2016;165(6):1493–1506.
  • Dong X, Li N, Liu Z, et al. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J Agric Food Chem. 2020;68(8):2477–2484.
  • Wu Y, Chen T, Liu Y, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 2020;48(2):996–1009.
  • Wu Y, Chen T, Liu Y, et al. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng. 2018;49:232–241.
  • Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41(15):7429–7437.
  • Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–1183.
  • Wang C, Cao Y, Wang Y, et al. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb Cell Fact. 2019;18(1):90–13.
  • Lu Z, Yang S, Yuan X, et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 2019;47(7):e40.
  • Su Y, Liu C, Fang H, et al. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact. 2020;19(1):173–112.
  • Zhang K, Su L, Wu J. Recent advances in recombinant protein production by Bacillus subtilis. Annu Rev Food Sci Technol. 2020;11:295–318.
  • Liu Y, Li J, Du G, et al. Metabolic engineering of Bacillus subtilis fueled by systems biology: recent advances and future directions. Biotechnol Adv. 2017;35(1):20–30.
  • Liu Y, Liu L, Li J, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends Biotechnol. 2019;37(5):548–562.
  • Westbrook AW, Ren X, Oh J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng. 2018;47:401–413.
  • Westbrook AW, Ren X, Moo-Young M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng. 2018;115(1):216–231.
  • Westbrook AW, Ren X, Moo-Young M, et al. Metabolic engineering of Bacillus subtilis for l-valine overproduction. Biotechnol Bioeng. 2018;115(11):2778–2792.
  • Yang H, Liu Y, Li J, et al. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate. Biotechnol Bioeng. 2020;117(7):2116–2130.
  • Zou D, Maina SW, Zhang F, et al. Mining new plipastatins and increasing the total yield using CRISPR/Cas9 in genome-modified Bacillus subtilis 1A751. J Agric Food Chem. 2020;68(41):11358–11367.
  • Zhang K, Su L, Wu J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol. 2018;102(12):5089–5103.
  • Boumezbeur AH, Bruer M, Stoecklin G, et al. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metab Eng. 2020;61:58–68.
  • Jakutyte-Giraitiene L, Gasiunas G. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1. J Ind Microbiol Biotechnol. 2016;43(8):1183–1188.
  • Schilling T, Dietrich S, Hoppert M, et al. A CRISPR-cas9-based toolkit for fast and precise in vivo genetic engineering of Bacillus subtilis phages. Viruses. 2018;10(5):1–12.
  • Otte K, Kühne NM, Furrer AD, et al. A CRISPR-Cas9 tool to explore the genetics of Bacillus subtilis phages. Lett Appl Microbiol. 2020;71(6):588–595.
  • Burkholder PR, Giles NHJ. Induced biochemical mutations in Bacillus subtilis. Am J Bot. 1947;34(6):345–348.
  • Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA. 1958;44(10):1072–1078.
  • Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997;390(6657):249–256.
  • Mougiakos I, Bosma EF, Weenink K, et al. Efficient genome editing of a facultative thermophile using mesophilic spCas9. ACS Synth Biol. 2017;6(5):849–861.
  • Kaifeng L, Dongbo C, Zhangqian W, et al. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol. 2021;84:e02608-17.
  • Zhan Y, Xu Y, Zheng P, et al. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis. Appl Microbiol Biotechnol. 2020;104(1):391–403.
  • Schultenkämper K, Brito LF, López MG, et al. Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus. Appl Microbiol Biotechnol. 2019;103(14):5879–5889.
  • Soonsanga S, Luxananil P, Promdonkoy B. Modulation of Cas9 level for efficient CRISPR-Cas9-mediated chromosomal and plasmid gene deletion in Bacillus thuringiensis. Biotechnol Lett. 2020;42(4):625–632.
  • Hartz P, Gehl M, König L, et al. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J Biotechnol. 2021;329:170–179.
  • Li Y, Wang H, Zhang L, et al. Efficient genome editing in Bacillus licheniformis mediated by a conditional CRISPR/Cas9 system. Microorganisms. 2020;8:754.
  • Zhou C, Liu H, Yuan F, et al. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing. Int J Biol Macromol. 2019;122:329–337.
  • Mougiakos I, Mohanraju P, Bosma EF, et al. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat Commun. 2017;8(1):1647.
  • Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–239.
  • Dicarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336–4343.
  • Zhang Y, Wang J, Wang Z, et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun. 2019;10(1):1053–1010.
  • McCarty NS, Shaw WM, Ellis T, et al. Rapid assembly of gRNA arrays via modular cloning in yeast. ACS Synth Biol. 2019;8(4):906–910.
  • Reis AC, Halper SM, Vezeau GE, et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat Biotechnol. 2019;37(11):1294–1301.
  • McCarty NS, Graham AE, Studená L, et al. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun. 2020;11(1):1281–1213.
  • Zhao H, Sun Y, Peters JM, et al. Depletion of undecaprenyl pyrophosphate phosphatases disrupts cell envelope biogenesis in Bacillus subtilis. J Bacteriol. 2016;198(21):2925–2935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.