871
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Ultra-specific nucleic acid testing by target-activated nucleases

, , , , , & ORCID Icon show all
Pages 1061-1078 | Received 23 Feb 2021, Accepted 25 Jun 2021, Published online: 27 Oct 2021

References

  • Moon S, Sridhar D, Pate MA, et al. Will Ebola change the game? Ten essential reforms before the next pandemic. The report of the Harvard-LSHTM independent panel on the global response to ebola. Lancet. 2015;386(10009):2204–2221.
  • Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol. 2016;97(2):269–273.
  • De Wit E, Van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–524.
  • Torales J, O'Higgins M, Castaldelli-Maia JM, et al. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soc Psychiatry. 2020;66(4):317–320.
  • Ellison G, Zhu G, Moulis A, et al. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J Clin Pathol. 2013;66(2):79–89.
  • Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10(11):760–774.
  • Milbury CA, Li J, Makrigiorgos GM, et al. PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem. 2009;55(4):632–640.
  • Maurer JJ. Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol. 2011;2(1):259–279.
  • Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
  • Rong E, Wang H, Hao S, et al. Heteroplasmy detection of mitochondrial DNA A3243G mutation using quantitative real-time PCR assay based on TaqMan-MGB probes. Biomed Res Int. 2018;2018(3):1286480.
  • Liang H, Geng J, Bai S, et al. TaqMan real-time PCR for detecting bovine viral diarrhea virus. Pol J Vet Sci. 2019;22(2):405–413.
  • Lobato IM, O'Sullivan CK. Recombinase polymerase amplification: basics, applications and recent advances. Trends Analyt Chem. 2018;98:19–35.
  • Walker GT, Fraiser MS, Schram JL, et al. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20(7):1691–1696.
  • Ali MM, Li F, Zhang Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–3341.
  • Jeong YJ, Park K, Kim D-E. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci. 2009;66(20):3325–3336.
  • Malek L, Sooknanan R, Compton J. Nucleic acid sequence-based amplification (NASBA™). Methods Mol Biol. 2008;28:253–260.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.
  • Xia S, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA. Cell Discov. 2020;6(1):34–37.
  • Njiru ZK. Rapid and sensitive detection of human African trypanosomiasis by loop-mediated isothermal amplification combined with a lateral-flow dipstick. Diagn Microbiol Infect Dis. 2011;69(2):205–209.
  • Mori Y, Nagamine K, Tomita N, et al. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289(1):150–154.
  • Pardee K, Green AA, Takahashi MK, et al. Rapid, low-cost detection of 8zika virus using programmable biomolecular components. Cell. 2016;165(5):1255–1266.
  • Scheler O, Glynn B, Kurg A. Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev Mol Diagn. 2014;14(4):489–500.
  • Zhou W, Hu L, Ying L, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun. 2018;9(1):5012–5020.
  • Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018;4(20):20–24.
  • Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439.
  • Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442.
  • Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–239.
  • Riordan SM, Heruth DP, Zhang LQ, et al. Application of CRISPR/Cas9 for biomedical discoveries. Nat Biotechnol. 2015;5(1):1–11.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
  • Li L, Li S, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 2019;8(10):2228–2237.
  • He R, Wang L, Wang F, et al. Pyrococcus furiosus argonaute-mediated nucleic acid detection. Chem Commun (Camb). 2019;55(88):13219–13222.
  • Liu Q, Guo X, Xun G, et al. Argonaute-mediated system for supersensitive and multiplexed detection of rare mutations. biorxiv. 2020. 803841. Doi:.
  • Kiesling T, Cox K, Davidson EA, et al. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res. 2007;35(18):e117.
  • Yang CJ, Liang C, Huang J, et al. Linear molecular beacons for highly sensitive bioanalysis based on cyclic Exo III enzymatic amplification. Biosens Bioelectron. 2011;27(1):119–124.
  • Zuo X, Xia F, Patterson A, et al. Two-step, PCR-free telomerase detection by using exonuclease III-aided target recycling. Chembiochem. 2011;12(18):2745–2747.
  • Euler M, Wang Y, Nentwich O, et al. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol. 2012;54(4):308–312.
  • Euler M, Wang Y, Heidenreich D, et al. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4):1110–1117.
  • Loo JF, Lau PM, Ho HP, et al. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening. Talanta. 2013;115:159–165.
  • Dahl F, Banér J, Gullberg M, et al. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A. 2004;101(13):4548–4553.
  • Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–232.
  • Schweitzer B, Roberts S, Grimwade B, et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat Biotechnol. 2002;20(4):359–365.
  • Fang Z, Wu W, Lu X, et al. Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. Biosens Bioelectron. 2014;56:192–197.
  • Shi C, Ge Y, Gu H, et al. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction. Biosens Bioelectron. 2011;26(12):4697–4701.
  • Shi C, Liu Q, Ma C, et al. Exponential strand-displacement amplification for detection of microRNAs. Anal Chem. 2014;86(1):336–339.
  • Wang L, Han Y, Xiao S, et al. Reverse strand-displacement amplification strategy for rapid detection of p53 gene. Talanta. 2018;187:365–369.
  • Chu ZJ, Xiao SJ, Yuan MY, et al. Rapid and sensitive detection of Mycobacterium tuberculosis based on strand displacement amplification and magnetic beads. Luminescence. 2021;36(1):66–72.
  • Wang J, Zhang J, Li T, et al. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer. Biosens Bioelectron. 2019;131:143–148.
  • Liu J, Qin Q, Zhang X, et al. Development of a novel lateral flow biosensor combined with Aptamer-based isolation: application for rapid detection of grouper nervous necrosis virus. Front Microbiol. 2020;11:886–892.
  • Thompson D, Lei Y. Mini review: recent progress in RT-LAMP enabled COVID-19 detection. Sensors Actuators Rep. 2020;2(1):100017.
  • Geojith G, Dhanasekaran S, Chandran SP, et al. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods. 2011;84(1):71–73.
  • Poon LL, Wong BW, Ma EH, et al. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem. 2006;52(2):303–306.
  • An L, Tang W, Ranalli TA, et al. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 2005;280(32):28952–28958.
  • Motré A, Li Y, Kong H. Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase. Gene. 2008;420(1):17–22.
  • Wharam SD, Hall MJ, Wilson WH. Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp. Virol J. 2007;4:52.
  • Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.
  • Deiman B, Aarle PV, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). MB. 2002;20(2):163–179.
  • Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204–1121.
  • Hardinge P, Murray JAH. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep. 2019;9(1):7400.
  • Shen H, Wen J, Liao X, et al. A sensitive, highly specific novel isothermal amplification method based on single-nucleotide polymorphism for the rapid detection of Salmonella pullorum. Front Microbiol. 2020;11:560791.
  • Liu W, Yuan C, Zhang L, et al. Development of isothermal amplification methods for rapid and sensitive detection of heat-labile enterotoxin producing Escherichia coli. J Microbiol Methods. 2019;161:47–55.
  • Kamel B, Laidemitt MR, Lu L, et al. Detecting and identifying Schistosoma infections in snails and aquatic habitats: a systematic review. PLoS Negl Trop Dis. 2021;15(3):e0009175.
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545.
  • Tan E, Erwin B, Dames S, et al. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 2008;47(38):9987–9999.
  • Borst A, Box AT, Fluit AC. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur J Clin Microbiol Infect Dis. 2004;23(4):289–299.
  • Chou PH, Lin YC, Teng PH, et al. Real-time target-specific detection of loop-mediated isothermal amplification for white spot syndrome virus using fluorescence energy transfer-based probes. J Virol Methods. 2011;173(1):67–74.
  • Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–736.
  • Hsu PD, Lander ES, Zhang FJC. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–1278.
  • Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading). 2009;155(Pt 3):733–740.
  • Jenai Q, Charles L, Alison K, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47(14):e83.
  • Zhang Y, Qian L, Wei W, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS Synth Biol. 2017;6(2):211–216.
  • Qiu X-Y, Zhu L-Y, Zhu C-S, et al. Highly effective and low-cost microRNA detection with CRISPR-Cas9. ACS Synth Biol. 2018;7(3):807–813.
  • Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.
  • Hajian R, Balderston S, Tran T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng. 2019;3(6):427–437.
  • Joung J, Ladha A, Saito M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv[Preprint] May, 2020.
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–444.
  • Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277–282.
  • Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839–842.
  • Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing. Nat Commun. 2019;10(1):212–216.
  • Li SY, Cheng QX, Liu JK, et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018;28(4):491–493.
  • Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–868.
  • Broughton JP, Deng X, Yu G, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870–874.
  • Wang X, Ji P, Fan H, et al. CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Commun Biol. 2020;3(1):62–70.
  • Oncology FJJT. A CRISPR test for detection of circulating nuclei acids. Transl Oncol. 2019;12(12):1566–1573.
  • Mukama O, Yuan T, He Z, et al. A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18. Sensor Actuat B-Chem. 2020;316:128119–128129.
  • Huang Z, Tian D, Liu Y, et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosens Bioelectron. 2020;164:112316–112324.
  • Teng F, Guo L, Cui T, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019;20(1):132.
  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–284.
  • Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444–448.
  • Fozouni P, Son S, Díaz de León Derby M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 2021;184(2):323–333.
  • Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.
  • Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 2020;48(9):5016–5023.
  • Swarts DC, Makarova K, Wang Y, et al. The evolutionary journey of argonaute proteins. Nat Struct Mol Biol. 2014;21(9):743–753.
  • Willkomm S, Oellig CA, Zander A, et al. Structural and mechanistic insights into an archaeal DNA-guided argonaute protein. Nat Microbiol. 2017;2:17035.
  • Chong Y, Liu Q, Huang F, et al. Characterization of a recombinant thermotolerant argonaute protein as an endonuclease by broad guide utilization. Bioresour Bioprocess. 2019;6(1):1–10.
  • Enghiad B, Zhao H. Programmable DNA-guided artificial restriction enzymes. ACS Synth Biol. 2017;6(5):752–757.
  • Wu T, Xiao X, Gu F, et al. Sensitive discrimination of stable mismatched base pairs by an abasic site modified fluorescent probe and lambda exonuclease. Chem Commun (Camb). 2015;51(98):17402–17405.
  • Xiao X, Song C, Zhang C, et al. Ultra-selective and sensitive DNA detection by a universal apurinic/apyrimidinic probe-based endonuclease IV signal amplification system. Chem Commun (Camb). 2012;48(14):1964–1966.
  • Li L, Xiao X, Ge J, et al. Discrimination Cascade enabled selective detection of single-nucleotide mutation. ACS Sens. 2017;2(3):419–425.
  • Xiao X, Xu A, Zhai J, et al. Combination of a modified block PCR and endonuclease IV-based signal amplification system for ultra-sensitive detection of low-abundance point mutations. Methods. 2013;64(3):255–259.
  • Fu S, Li N, Li J, et al. Engineering high-robustness DNA molecular circuits by utilizing nucleases. Nanoscale. 2020;12(13):6964–6970.
  • Miranda-Castro R, Marchal D, Limoges B, et al. Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling. Chem Commun (Camb). 2012;48(70):8772–8774.
  • Luo C, Tang H, Cheng W, et al. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by exonuclease III-assisted signal amplification. Biosens Bioelectron. 2013;48(19):132–137.
  • Su J, Zhang H, Jiang B, et al. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling. Biosens Bioelectron. 2011;29(1):184–188.
  • Gerasimova YV, Peck S, Kolpashchikov D. Enzyme-assisted binary probe for sensitive detection of RNA and DNA. Chem Commun (Camb). 2010;46(46):8761–8763.
  • Kovall R, Matthews BW. Toroidal structure of lambda-exonuclease. Science. 1997;277(5333):1824–1827.
  • Wu T, Xiao X, Zhang Z, et al. Enzyme-mediated single-nucleotide variation detection at room temperature with high discrimination factor. Chem Sci. 2015;6(2):1206–1211.
  • Yu Y, Wu T, Johnson-Buck A, et al. A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion. Biosens Bioelectron. 2016;82:248–254.
  • Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem. 2011;3(2):103–113.
  • Deng Y, Ma L, Han Q, et al. DNA-templated timer probes for multiplexed sensing. Nano Lett. 2020;20(4):2688–2694.
  • Zuo X, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc. 2010;132(6):1816–1818.
  • Yan L, Nakayama S, Yitbarek S, et al. Isothermal detection of RNA with restriction endonucleases. Chem Commun (Camb). 2011;47(1):200–202.
  • Wang Q, Yang L, Yang X, et al. An electrochemical DNA biosensor based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy. Chem Commun (Camb). 2012;48(24):2982–2984.
  • Chan S-H, Stoddard BL, Xu S-Y, et al. Natural and engineered nicking endonucleases-from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. 2011;39(1):1–18.
  • Hirvonen JJ, Nevalainen M, Tissari P, et al. Rapid confirmation of suspected methicillin-resistant Staphylococcus aureus colonies on chromogenic agars by a new commercial PCR assay, the GenomEra MRSA/SA diagnose. Eur J Clin Microbiol Infect Dis. 2012;31(8):1961–1968.
  • Zhu N, China Novel Coronavirus Investigating and Research Team, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733.
  • Khodakov D, Wang C, Zhang DY, et al. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev. 2016;105 (Pt A):3–19.
  • Li W, Jiang W, Ding Y, et al. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate. Biosens Bioelectron. 2015;71:401–406.
  • Tao D, Liu J, Nie X, et al. Application of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the sensitive detection of African swine fever virus. ACS Synth Biol. 2020;9(9):2339–2350.
  • Wang X, He S, Zhao N, et al. Development and clinical application of a novel CRISPR-Cas12a based assay for the detection of African swine fever virus. BMC Microbiol. 2020;20(1):282–286.
  • Widaningrum T, Surareungchai W, Somasundrum M, et al. Sub-attomolar electrochemical measurement of DNA hybridization based on the detection of high coverage biobarcode latex labels at PNA-modified screen printed electrodes. Talanta. 2017;167:14–20.
  • Cannon B, Campos AR, Lewitz Z, et al. Zeptomole detection of DNA nanoparticles by single-molecule fluorescence with magnetic field-directed localization. Anal Biochem. 2012;431(1):40–47.
  • Ostromohov N, Schwartz O, Bercovici MJAC. Focused upon hybridization: rapid and high sensitivity detection of DNA using isotachophoresis and peptide nucleic acid probes. Anal Chem. 2015;87(18):9459–9466.
  • Han S, Soylu MC, Kirimli C, et al. Rapid, label-free genetic detection of enteropathogens in stool without genetic isolation or amplification. Biosens Bioeletron. 2019;130:73–80.
  • Kirimli CE, Shih W-H, Shih WY, et al. Specific in situ hepatitis B viral double mutation (HBVDM) detection in urine with 60 copies ml(-1) analytical sensitivity in a background of 250-fold wild type without DNA isolation and amplification. Analyst. 2015;140(5):1590–1598.
  • Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398–574408.
  • McDonough SJ, Bhagwate A, Sun Z, et al. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PLoS One. 2019;14(4):e0211400.
  • Oberacker P, Stepper P, Bond DM, et al. Bio-On-Magnetic-Beads (BOMB): open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol. 2019;17(1):e3000107.
  • Huang M, Zhou X, Wang H, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal Chem. 2018;90(3):2193–2200.
  • Kuzmenko A, Yudin D, Ryazansky S, et al. Programmable DNA cleavage by ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea. Nucleic Acids Res. 2019;47(11):5822–5836.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.