556
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Role of proteins in the biosynthesis and functioning of metallic nanoparticles

ORCID Icon, , &
Pages 1045-1060 | Received 08 Feb 2021, Accepted 22 Aug 2021, Published online: 31 Oct 2021

References-

  • Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2014;5(5):1–11.
  • Rafique M, Sadaf I, Rafique MS, et al. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45(7):1272–1291.
  • Gupta A, Singh D, Singh KS, et al. Role of actinomycetes in bioactive and nanoparticle synthesis. In: Kumar A, Singh AK, Choudhary KK, editors. Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. London: Elsevier. p. 163–182.
  • Singh P, Kim Y-J, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599.
  • Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004;4(9):1733–1739.
  • Bedi A, Singh BR, Deshmukh SK, et al. Development of a novel myconanomining approach for the recovery of agriculturally important elements from jarosite waste. J Environ Sci. 2018;67:356–367.
  • Rostami H, Khosravi F, Mohseni M, et al. Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation. Int J Biol Macromol. 2018;107(Pt A):343–348.
  • Li J, Tian B, Li T, et al. Biosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int J Nanomedicine. 2018;13:1411–1424.
  • Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1(10):515–519.
  • Munro CJ, Hughes ZE, Walsh TR, et al. Peptide sequence effects control the single pot reduction, nucleation, and growth of Au nanoparticles. J Phys Chem C. 2016;120(33):18917–18924.
  • Goswami N, Saha R, Pal SK, et al. Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. J Nanopart Res. 2011;13(10):5485–5495.
  • Thanh NTK, Maclean N, Mahiddine S, et al. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114(15):7610–7630.
  • Selvakannan PR, Swami A, Srisathiyanarayanan D, et al. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir. 2004;20(18):7825–7836.
  • Bhattacharjee RR, Das AK, Haldar D, et al. Peptide-assisted synthesis of gold nanoparticles and their self-assembly. J Nanosci Nanotechnol. 2005;5(7):1141–1147.
  • Si S, Mandal TK. Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study . Chemistry. 2007;13(11):3160–3168.
  • Nam KT, Lee YJ, Krauland EM, et al. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano. 2008;2(7):1480–1486.
  • Ingle A, Gade A, Pierrat S, et al. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. CNANO. 2008;4(2):141–144.
  • Durán N, Marcato PD, Durán M, et al. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90(5):1609–1624.
  • Nangia Y, Wangoo N, Sharma S, et al. Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett. 2009;94(23):233901.
  • Jha AK, Prasad K. Biosynthesis of metal and oxide nanoparticles using lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J. 2010;5(3):285–291.
  • Bar H, Bhui DK, Sahoo GP, et al. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surfaces A Physicochem Eng Asp. 2009;348(1–3):212–216.
  • Bar H, Bhui DK, Sahoo GP, et al. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surfaces A Physicochem Eng Asp. 2009;339(1–3):134–139.
  • Barwal I, Ranjan P, Kateriya S, et al. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnology. 2011;9:12–56.
  • Yang W, Guo W, Chang J, et al. Protein/peptide-templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J Mater Chem B. 2017;5(3):401–417.
  • Peng Z, Peralta MDR, Cox DL, et al. Bottom-up synthesis of protein-based nanomaterials from engineered β-solenoid proteins. PLoS One. 2020;15(2):e0229319.
  • Tan YN, Lee JY, Wang DIC, et al. Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc. 2010;132(16):5677–5686.
  • Spicer CD, Jumeaux C, Gupta B, et al. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–3620.
  • Uchida M, Qazi S, Edwards E, et al. Use of protein cages as a template for confined synthesis of inorganic and organic nanoparticles. In: Orner BP, editor. Protein Cages. New York: Springer. p. 17–25.
  • Chasteen ND, Harrison PM. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol. 1999;126(3):182–194.
  • Ueno T, Suzuki M, Goto T, et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew Chem Int Ed Engl. 2004;43(19):2527–2530.
  • Okuda M, Iwahori K, Yamashita I, et al. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng. 2003;84(2):187–194.
  • Bhaskar S, Lim S. Engineering protein nanocages as carriers for biomedical applications. NPG Asia Mater. 2017;9(4):e371–e371.
  • Calzolai L, Laera S, Ceccone G, et al. Structure and stability of proteins interacting with nanoparticles. ACS Symp Ser. 2012;1120:839–855.
  • Saptarshi SR, Duschl A, Lopata AL, et al. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:12–26.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–557.
  • Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47(8):2651–2659.
  • Dobrovolskaia MA, Patri AK, Zheng J, et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 2009;5(2):106–117.
  • Melby ES, Lohse SE, Park JE, et al. Cascading effects of nanoparticle coatings: surface functionalization dictates the assemblage of complexed proteins and subsequent interaction with model cell membranes. ACS Nano. 2017;11(6):5489–5499.
  • Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA. 2011;108(41):16968–16973.
  • Mahmoudi M, Bertrand N, Zope H, et al. Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today. 2016;11(6):817–832.
  • Mahmoudi M, Sheibani S, Milani AS, et al. Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine. 2015;10(2):215–226.
  • Caracciolo G, Farokhzad OC, Mahmoudi M, et al. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–264.
  • Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA, et al. Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale. 2012;4(17):5461–5468.
  • Ma C, White JC, Dhankher OP, et al. Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol. 2015;49(12):7109–7122.
  • Walczyk D, Bombelli FB, Monopoli MP, et al. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010;132(16):5761–5768.
  • Monopoli MP, Walczyk D, Campbell A, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525–2534.
  • Landsiedel R, Ma-Hock L, Kroll A, et al. Testing metal-oxide nanomaterials for human safety. Adv Mater. 2010;22(24):2601–2627.
  • Karajanagi SS, Vertegel AA, Kane RS, et al. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004;20(26):11594–11599.
  • Casals E, Pfaller T, Duschl A, et al. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–3632.
  • Vroman L, Adams AL, Fischer GC, et al. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55(1):156–159.
  • Foroozandeh P, Aziz AA. Merging worlds of nanomaterials and biological environment: factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res Lett. 2015;10:221.
  • Bewersdorff T, Vonnemann J, Kanik A, et al. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. Int J Nanomedicine. 2017;12:2001–2019.
  • Neagu M, Piperigkou Z, Karamanou K, et al. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol. 2017;91(3):1031–1048.
  • Nandhakumar S, Dhanaraju MD, Sundar VD, et al. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly (ε-caprolactone) nanoparticles. Bull Fac Pharmacy Cairo Univ. 2017;55(2):249–258.
  • Treuel L, Brandholt S, Maffre P, et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano. 2014;8(1):503–513.
  • Sager TM, Porter DW, Robinson VA, et al. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology. 2007;1(2):118–129.
  • Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008;105(38):14265–14270.
  • Mahmoudi M, Lynch I, Ejtehadi MR, et al. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev. 2011;111(9):5610–5637.
  • Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799.
  • Nagayama S, Ogawara K-I, Fukuoka Y, et al. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm. 2007;342(1–2):215–221.
  • Szekeres GP, Fernández-Iglesias N, Kneipp J, et al. Mass spectrometric approach for the analysis of the hard protein corona of nanoparticles in living cells. J Proteomics. 2020;212:103582.
  • Raoufi M, Hajipour MJ, Kamali Shahri SM, et al. Probing fibronectin conformation on a protein corona layer around nanoparticles. Nanoscale. 2018;10(3):1228–1233.
  • Mahmoudi M, Abdelmonem AM, Behzadi S, et al. Temperature: the “ignored” factor at the nanobio interface. ACS Nano. 2013;7(8):6555–6562.
  • Jiang J, Oberdörster G, Biswas P, et al. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11(1):77–89.
  • Lee H. Effects of nanoparticle electrostatics and protein-protein interactions on corona formation: conformation and hydrodynamics. Small. 2020;16(10):e1906598.
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137–143.
  • Yang JA, Lohse SE, Murphy CJ, et al. Tuning cellular response to nanoparticles via surface chemistry and aggregation. Small. 2014;10(8):1642–1651.
  • Elliott JT, Rösslein M, Song NW, et al. Toward achieving harmonization in a nanocytotoxicity assay measurement through an interlaboratory comparison study. ALTEX. 2017;34(2):201–218.
  • Ke PC, Lin S, Parak WJ, et al. A decade of the protein corona. ACS Nano. 2017;11(12):11773–11776.
  • Schöttler S, Landfester K, Mailänder V, et al. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl. 2016;55(31):8806–8815.
  • Hellstrand E, Lynch I, Andersson A, et al. Complete high-density lipoproteins in nanoparticle corona. Febs J. 2009;276(12):3372–3381.
  • Nguyen VH, Lee B-J. Protein corona: a new approach for nanomedicine design. Int J Nanomedicine. 2017;12:3137–3151.
  • Docter D, Westmeier D, Markiewicz M, et al. The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem Soc Rev. 2015;44(17):6094–6121.
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627.
  • Min YJ, Akbulut M, Kristiansen K, et al. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 2008;7(7):527–538.
  • Gilbert B, Huang F, Zhang H, et al. Nanoparticles: strained and stiff. Science. 2004;305(5684):651–654.
  • Qin M, Zhang J, Li M, et al. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics. 2020;10(3):1213–1229.
  • Lesniak A, Fenaroli F, Monopoli MP, et al. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano. 2012;6(7):5845–5857.
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21.
  • Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012;116(30):8901–8907.
  • Doorley GW, Payne CK. Nanoparticles act as protein carriers during cellular internalization. Chem Commun. 2012;48(24):2961–2963.
  • Corbo C, Molinaro R, Parodi A, et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11(1):81–100.
  • Toy R, Roy K. Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med. 2016;1(1):47–62.
  • Dehaini D, Fang RH, Zhang L, et al. Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med. 2016;1(1):30–46.
  • Cho WS, Duffin R, Howie SEM, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2 + dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:1–16.
  • Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915–2922.
  • Leroueil PR, Berry SA, Duthie K, et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008;8(2):420–424.
  • Chithrani BD, Ghazani AA, Chan WCW, et al. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–668.
  • Shadmani P, et al. Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis. J Phys Condens Matter. 2020;32:115101.
  • Zhang P, Ma Y, Zhang Z, et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)). Environ Sci Technol. 2012;46(3):1834–1841.
  • Fleischer CC, Payne CK. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B. 2014;118(49):14017–14026.
  • Wang T, Bai J, Jiang X, et al. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano. 2012;6(2):1251–1259.
  • Tian X, Zhu M, Du L, et al. Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small. 2013;9(14):2432–2439.
  • Mu Q, Su G, Li L, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces. 2012;4(4):2259–2266.
  • Jin S, Ma X, Ma H, et al. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. Nanoscale. 2013;5(1):143–146.
  • Richards DM, Endres RG. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proc Natl Acad Sci USA. 2016;113(22):6113–6118.
  • Richards DM, Endres RG. The mechanism of phagocytosis: two stages of engulfment. Biophys J. 2014;107(7):1542–1553.
  • Qiu Y, Liu Y, Wang L, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31(30):7606–7619.
  • Mubarak Ali D, et al. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J. 2015;23:421–428.
  • Saha K, Kim ST, Yan B, et al. Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small. 2013;9(2):300–305.
  • Auffan M, Rose J, Bottero J-Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009;4(10):634–641.
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–5591.
  • Kih M, Lee EJ, Lee NK, et al. Designed trimer-mimetic TNF superfamily ligands on self-assembling nanocages. Biomaterials. 2018;180:67–77.
  • Je H, Nam G-H, Kim GB, et al. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J Control Release. 2021;331:7–18.
  • Wu Q, Gao H, Vriesekoop F, et al. Calcium phosphate coated core-shell protein nanocarriers: robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Mater Sci Eng C Mater Biol Appl. 2020;115:111094.
  • Chen S, Wu Q, Ma M, et al. Designing biocompatible protein nanoparticles for improving the cellular uptake and antioxidation activity of tetrahydrocurcumin. J. Drug Deliv Sci Technol. 2021;63:102404.
  • Das RK, Brar SK, Verma M, et al. Checking the biocompatibility of plant-derived metallic nanoparticles: molecular perspectives. Trends Biotechnol. 2016;34(6):440–449.
  • Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotech. 2013;8(10):772–781.
  • Senapati VA, Kansara K, Shanker R, et al. Monitoring characteristics and genotoxic effects of engineered nanoparticle-protein corona. Mutagenesis. 2017;32(5):479–490.
  • Walkey CD, Olsen JB, Song F, et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8(3):2439–2455.
  • Ruenraroengsak P, Novak P, Berhanu D, et al. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology. 2012;6(1):94–108.
  • Yin H, Chen R, Casey PS, et al. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 2015;5(90):73963–73973.
  • Wang F, Yu L, Monopoli MP, et al. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine. 2013;9(8):1159–1168.
  • Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–428.
  • Radhakrishnan VS, Dwivedi SP, Siddiqui MH, et al. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. Int J Nanomedicine. 2018;13(T-NANO 2014 Abstracts):91–96.
  • Mirzajani F, Askari H, Hamzelou S, et al. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf. 2013;88:48–54.
  • Zhao L, Peng B, Hernandez-Viezcas JA, et al. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano. 2012;6(11):9615–9622.
  • Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2(8):469–478.
  • Ngobili TA, Daniele MA. Nanoparticles and direct immunosuppression. Exp Biol Med. 2016;241(10):1064–1073.
  • Blank F, Gerber P, Rothen-Rutishauser B, et al. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology. 2011;5(4):606–621.
  • Manke A, Wang L, Rojanasakul Y, et al. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916.
  • Yokel RA, Hussain S, Garantziotis S, et al. The yin: an adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. Environ Sci Nano. 2014;1(5):406–428.
  • Park J-Y, Park SJ, Park JY, et al. Unfolded protein corona surrounding nanotubes influence the innate and adaptive immune system. Adv Sci. 2021;8(8):2004979.
  • Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223–246.
  • Liu Y, Jiao F, Qiu Y, et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials. 2009;30(23–24):3934–3945.
  • Ebrahimian M, Hashemi M, Maleki M, et al. Induction of a balanced Th1/Th2 immune responses by co-delivery of PLGA/ovalbumin nanospheres and CpG ODNs/PEI-SWCNT nanoparticles as TLR9 agonist in BALB/c mice. Int J Pharm. 2016;515(1–2):708–720.
  • Wan S, Kelly PM, Mahon E, et al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano. 2015;9(2):2157–2166.
  • Moremen KW, Tiemeyer M, Nairn AV, et al. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13(7):448–462.
  • Paszek MJ, DuFort CC, Rossier O, et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature. 2014;511(7509):319–325.
  • Johnson JL, Jones MB, Ryan SO, et al. The regulatory power of glycans and their binding partners in immunity. Trends Immunol. 2013;34(6):290–298.
  • Mohamed BM, Verma NK, Davies AM, et al. Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine. 2012;7(8):1181–1195.
  • Chugh G, Siddique KHM, Solaiman ZM. Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges. Sustain. 2021;13:1781 13.
  • Judy JD, Unrine JM, Rao W, et al. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol. 2012;46(15):8467–8474.
  • Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on Phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2013;2(1):48–57.
  • Arora S, Sharma P, Kumar S, et al. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66(3):303–310.
  • Song U, Jun H, Waldman B, et al. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf. 2013;93:60–67.
  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, et al. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics. 2014;6(1):132–138.
  • Rico CM, Hong J, Morales MI, et al. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol. 2013;47(11):5635–5642.
  • Priester JH, Ge Y, Mielke RE, et al. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA. 2012;109(37):E2451–E2456.
  • Schwabe F, Schulin R, Limbach LK, et al. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere. 2013;91(4):512–520.
  • Servin AD, Morales MI, Castillo-Michel H, et al. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol. 2013;47(20):11592–11598.
  • Taylor AF, Rylott EL, Anderson CWN, et al. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One. 2014;9(4):e93793.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.