7,117
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Use of elicitors to enhance or activate the antibiotic production in streptomyces

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1260-1283 | Received 23 Feb 2021, Accepted 30 Aug 2021, Published online: 27 Oct 2021

References

  • Ruiz B, Chavez A, Forero A, et al. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol. 2010;36(2):146–167.
  • Ochi K. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo). 2017;70(1):25–40.
  • Weber T, Welzel K, Pelzer S, et al. Exploiting the genetic potential of polyketide producing Sreptomycetes. J Biotechnol. 2003;106(2–3):221–232.
  • Bentley SD, Chater KF, Cerdeño-Tárraga A-M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002;417(6885):141–147.
  • Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 2003;21(5):526–531.
  • Zong G, Zhong C, Fu J, et al. Complete genome sequence of the natamycin high-producing strain Streptomyces gilvosporeus F607. Genome Announc. 2018;6(1):e01402–e01417.
  • Ohnishi Y, Ishikawa J, Hara H, et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol. 2008;190(11):4050–4060.
  • Genilloud O. The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek. 2014;106(1):173–188.
  • Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol. 2013;97(1):87–98.
  • Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol. 2014;41(2):371–386.
  • Liu G, Chater KF, Chandra G, et al. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev. 2013;77(1):112–143.
  • Bachmann BO. Applied evolutionary theories for engineering of secondary metabolic pathways. Curr Opin Chem Biol. 2016;35:133–141.
  • Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol. 2017;44(4–5):573–588.
  • Tang Z, Xiao C, Zhuang Y, et al. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol. 2011;49(1):17–24.
  • Schäper S, Steinchen W, Krol E, et al. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A. 2017;114(24):E4822–E4831.
  • Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist's guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem. 2021;90:763–788.
  • Martín JF, Liras P. The balance metabolism safety net: integration of stress signals by interacting transcriptional factors in Streptomyces and related actinobacteria. Front Microbiol. 2019;10(3120):3120.
  • Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–176.
  • Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo). 2013;66(7):387–400.
  • Farrell K, Jahan MA, Kovinich N. Distinct mechanisms of biotic and chemical elicitors enable additive elicitation of the anticancer phytoalexin glyceollin I. Molecules. 2017;22(8):1261.
  • Kummritz S, Louis M, Haas C, et al. Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension. Appl Microbiol Biotechnol. 2016;100(16):7071–7082.
  • Rodríguez AR, Carmona NM, Villafán BR, et al. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie Van Leeuwenhoek. 2018;111(5):761–781.
  • van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep. 2011;28(7):1311–1333.
  • Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of specialized metabolism by signaling and transcriptional regulation: opportunities for new platforms for drug discovery? Annu Rev Microbiol. 2018;72(72):25–48.
  • Okada BK, Seyedsayamdost MR. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev. 2017;41(1):19–33.
  • Kong D, Wang X, Nie J, et al. Regulation of antibiotic production by signaling molecules in Streptomyces. Front Microbiol. 2019;10(2927):2927.
  • Xia H, Li X, Li Z, et al. The application of regulatory Cascades in Streptomyces: yield enhancement and metabolite mining. Front Microbiol. 2020;11:406.
  • Du C, van Wezel GP. Mining for microbial gems: integrating proteomics in the postgenomic natural product discovery pipeline. Proteomics. 2018;18(18):e1700332.
  • van Bergeijk DA, Terlouw BR, Medema MH, et al. Ecology and genomics of actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol. 2020;18(10):546–558.
  • Tyurin AP, Alferova VA, Korshun VA. Chemical elicitors of antibiotic biosynthesis in actinomycetes. Microorganisms. 2018;6(2):52.
  • Yoon V, Nodwell JR. Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol. 2014;41(2):415–424.
  • Beane WS, Morokuma J, Adams DS, et al. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol. 2011;18(1):77–89.
  • van der Meij A, Worsley SF, Hutchings MI, et al. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev. 2017;41(3):392–416.
  • Locatelli FM, Goo KS, Ulanova D. Effects of trace metal ions on secondary metabolism and the morphological development of Streptomycetes. Metallomics. 2016;8(5):469–480.
  • Wang L, Li Y, Li Y. Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL-24. Int J Biol Macromol. 2019;123:521–530.
  • Tanaka Y, Hosaka T, Ochi K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J Antibiot (Tokyo). 2010;63(8):477–481.
  • Kawai K, Wang G, Okamoto S, et al. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol Lett. 2007;274(2):311–315.
  • Shentu XP, Cao ZY, Xiao Y, et al. Substantial improvement of toyocamycin production in Streptomyces diastatochromogenes by cumulative drug-resistance mutations. PLoS One. 2018;13(8):e0203006.
  • Wang C, Huang D, Liang S. Identification and metabolomic analysis of chemical elicitors for tacrolimus accumulation in Streptomyces tsukubaensis. Appl Microbiol Biotechnol. 2018;102(17):7541–7553.
  • Braeken K, Moris M, Daniels R, et al. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol. 2006;14(1):45–54.
  • Ochi K, Tanaka Y, Tojo S. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements. J Ind Microbiol Biotechnol. 2014;41(2):403–414.
  • Tsuruta T. Accumulation of rare earth elements in various microorganisms. J Rare Earth. 2007;25(5):526–532.
  • Tsuruta T. Selective accumulation of light or heavy rare earth elements using gram-positive bacteria. Colloids Surf B Biointerfaces. 2006;52(2):117–122.
  • Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.
  • Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol. 2008;74(9):2834–2840.
  • Wang S, Liu F, Hou Z, et al. Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). World J Microbiol Biotechnol. 2014;30(4):1369–1376.
  • Wu H, Liu W, Shi L, et al. Comparative genomic and regulatory analyses of natamycin production of Streptomyces lydicus A02. Sci Rep. 2017;7(1):9114.
  • Beniamino Y, Pesce G, Zannoni A, et al. SrnR from Streptomyces griseus is a nickel-binding transcriptional activator. J Biol Inorg Chem. 2020;25(2):187–198.
  • Cundliffe E, Butler AR. Influence of dimethylsulfoxide on tylosin production in Streptomyces fradiae. J Ind Microbiol Biotechnol. 2001;27(1):46–51.
  • Chen G, Wang GY, Li X, et al. Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. J Antibiot (Tokyo). 2000;53(10):1145–1153.
  • Wang C, Wang J, Yuan J, et al. Generation of Streptomyces hygroscopicus cell factories with enhanced ascomycin production by combined elicitation and pathway-engineering strategies. Biotechnol Bioeng. 2019;116(12):3382–3395.
  • Bhatia SK, Lee B-R, Sathiyanarayanan G, et al. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol. 2016;217:141–149.
  • Wang J, Wang C, Song K, et al. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. Microb Cell Fact. 2017;16(1):169.
  • Sekurova ON, Zhang J, Kristiansen KA, et al. Activation of chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712 by ethanol shock: insights from the promoter fusion studies. Microb Cell Fact. 2016;15:85.
  • Doull JL, Ayer SW, Singh AK, et al. Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol. 1994;13(2):120–125.
  • Zhou WW, Ma B, Tang YJ, et al. Enhancement of validamycin a production by addition of ethanol in fermentation of Streptomyces hygroscopicus 5008. Bioresour Technol. 2012;114:616–621.
  • Xu G, Wang J, Wang L, et al. "Pseudo" gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem. 2010;285(35):27440–27448.
  • Sarkale AM, Kumar A, Appayee C. Organocatalytic approach for short asymmetric synthesis of ( R)-paraconyl alcohol: application to the total syntheses of IM-2, SCB2, and A-Factor γ-butyrolactone autoregulators. J Org Chem. 2018;83(7):4167–4172.
  • Ding C, Pan J, Jin M, et al. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology. 2016;10(8):1051–1060.
  • Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut. 2009;157(5):1619–1625.
  • Deckers AS, Loo S, L'hermite MM, et al. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol. 2009;43(21):8423–8429.
  • Liu X, Tang J, Wang L, et al. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicol Environ Saf. 2018;158:123–130.
  • Liu X, Tang J, Wang L, et al. Mechanism of CuO nano-particles on stimulating production of actinorhodin in Streptomyces coelicolor by transcriptional analysis. Sci Rep. 2019;9(1):11253.
  • Liu X, Tang J, Wang L, et al. Al2O3 nanoparticles promote secretion of antibiotics in Streptomyces coelicolor by regulating gene expression through the nano effect. Chemosphere. 2019;226:687–695.
  • Liu X, Tang J, Wang L, et al. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. J Environ Manage. 2019;243:308–317.
  • Qu X, Lei C, Liu W. Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. Angew Chem Int Ed Engl. 2011;50(41):9651–e9654.
  • Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64(2):435–459.
  • Lombardi PM, Angell HD, Whittington DA, et al. Structure of prokaryotic polyamine deacetylase reveals evolutionary functional relationships with eukaryotic histone deacetylases. Biochemistry. 2011;50(11):1808–1817.
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.
  • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–716.
  • Moore JM, Bradshaw E, Seipke RF, et al. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol. 2012;517:367–385.
  • Rigali S, Titgemeyer F, Barends S, et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 2008;9(7):670–675.
  • Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell. 1997;89(3):325–328.
  • Wojnarowska Nowak R, Polit J, Sheregii EM. Interaction of gold nanoparticles with cholesterol oxidase enzyme in bionanocomplex—determination of the protein structure by Fourier transform infrared spectroscopy. J Nanopart Res. 2020;22(5):1–14.
  • Aparicio JF, Fouces R, Mendes MV, et al. A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol. 2000;7(11):895–905.
  • Du Y, Chen SF, Cheng LY, et al. Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. J Microbiol. 2009;47(4):506–513.
  • Cao B, Yao F, Zheng X, et al. Genome mining of the biosynthetic gene cluster of the polyene macrolide antibiotic tetramycin and characterization of a P450 monooxygenase involved in the hydroxylation of the tetramycin B polyol segment. Chembiochem. 2012;13(15):2234–2242.
  • Payero TD, Vicente CM, Rumbero A, et al. Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives. Microb Cell Fact. 2015;14:114.
  • Seco EM, Perez-Zuniga FJ, Rolon MS, et al. Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol. 2004;11(3):357–366.
  • Aparicio JF, Martin JF. Microbial cholesterol oxidases: bioconversion enzymes or signal proteins? Mol Biosyst. 2008;4(8):804–809.
  • Mendes MV, Recio E, Anton N, et al. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol. 2007;14(3):279–290.
  • Wang M, Wang S, Zong G, et al. Improvement of natamycin production by cholesterol oxidase overexpression in Streptomyces gilvosporeus. J Microbiol Biotechnol. 2016;26(2):241–247.
  • Beites T, Pires SDS, Santos CL, et al. Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol. 2016;100(1):61–78.
  • Beld J, Sonnenschein EC, Vickery CR, et al. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep. 2014;31(1):61–108.
  • Kudo F, Kasama Y, Hirayama T, et al. Cloning of the pactamycin biosynthetic gene cluster and characterization of a crucial glycosyltransferase prior to a unique cyclopentane ring formation. J Antibiot. 2007;60(8):492–503.
  • Zaleta-Rivera K, Charkoudian LK, Ridley CP, et al. Cloning, sequencing, heterologous expression, and mechanistic analysis of A-74528 biosynthesis. J Am Chem Soc. 2010;132(26):9122–9128.
  • Mo X, Wang Z, Wang B, et al. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun. 2011;406(3):341–347.
  • Lombo F, Brana AF, Salas JA, et al. Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem. 2004;5(9):1181–1187.
  • Li A, Piel J. A gene cluster from a marine Streptomyces encoding the biosynthesis of the aromatic spiroketal polyketide griseorhodin A. Chem Biol. 2002;9(9):1017–1026.
  • Huang Y, Wendt-Pienkowski E, Shen B. A dedicated phosphopantetheinyl transferase for the Fredericamycin polyketide synthase from Streptomyces griseus. J Biol Chem. 2006;281(40):29660–29668.
  • Yan X, Zhang B, Tian W, et al. Puromycin A, B and C, cryptic nucleosides identified from Streptomyces alboniger NRRL B-1832 by PPtase-based activation. Synth Syst Biotechnol. 2018;3(1):76–80.
  • Zhang B, Tian W, Wang S, et al. Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol. 2017;12(7):1732–1736.
  • Jiang H, Wang Y-Y, Ran X-X, et al. Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Appl Environ Microbiol. 2013;79(11):3346–3354.
  • Wang L, McVey J, Vining LC. Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology (Reading). 2001;147(Pt 6):1535–1545.
  • Foley TL, Young BS, Burkart MD. Phosphopantetheinyl transferase inhibition and secondary metabolism. FEBS J. 2009;276(23):7134–7145.
  • Lambalot R, Gehring A, Flugel R, et al. A new enzyme superfamily-the phosphopantetheinyl transferases. Chem Biol. 1996;3(11):923–936.
  • Singh R. Enzymatic control of the related pathways of faty acid and undecylprodiginine biosynthesis in Streptomyces coelicolor. Dissertations and Teses. 2015;Paper :2112.
  • Craney A, Ozimok CJ, Pimentel-Elardo SM, et al. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol. 2012;19(8):1020–1027.
  • Ahmed S, Craney A, Pimentel‐Elardo SM, et al. A synthetic, species-specific activator of secondary metabolism and sporulation in Streptomyces coelicolor. Chembiochem. 2013;14(1):83–91.
  • Pimentel-Elardo SM, Sorensen D, Ho L, et al. Activity-independent discovery of secondary metabolites using chemical elicitation and cheminformatic inference. ACS Chem Biol. 2015;10(11):2616–2623.
  • Ochi K, Okamoto S. A magic bullet for antibiotic discovery. Chem Biol. 2012;19(8):932–934.
  • Zheng M, Storz G. Redox sensing by prokaryotic transcription factors. Biochem Pharmacol. 2000;59(1):1–6.
  • Liao Y, Wei ZH, Bai L, et al. Effect of fermentation temperature on validamycin a production by Streptomyces hygroscopicus 5008. J Biotechnol. 2009;142(3–4):271–274.
  • Li L, Bai L, Zhou X, et al. Enhanced validamycin production and gene expression at elevated temperature in Streptomyces hygroscopicus subsp. jingangensis 5008. Sci Bull. 2009;54(7):1204–1209.
  • Doull JL, Ayer SW, Singh AK, et al. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot (Tokyo). 1993;46(5):869–871.
  • Bursy J, Kuhlmann AU, Pittelkow M, et al. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol. 2008;74(23):7286–7296.
  • Saito S, Kato W, Ikeda H, et al. Discovery of "heat shock metabolites" produced by thermotolerant actinomycetes in high-temperature culture. J Antibiot (Tokyo). 2020;73(4):203–210.
  • Yun S-I, Yahya ARM, Cossar D, et al. Temperature downshift increases recombinant cytokine titer in Streptomyces lividans fermentation. Biotechnol Lett. 2001;23(23):1903–1905.
  • Schumann W. Regulation of bacterial heat shock stimulons. Cell Stress Chaperones. 2016;21(6):959–968.
  • Bucca G, Pothi R, Hesketh A, et al. Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor. Nucleic Acids Res. 2018;46(11):5692–5703.
  • Servant P, Mazodier P. Negative regulation of the heat shock response in Streptomyces. Arch Microbiol. 2001;176(4):237–242.
  • Wei ZH, Wu H, Bai L, et al. Temperature shift-induced reactive oxygen species enhanced validamycin a production in fermentation of Streptomyces hygroscopicus 5008. Bioprocess Biosyst Eng. 2012;35(8):1309–1316.
  • Mo SJ, Kim J, Oh CH. Different effects of acidic pH shock on the prodiginine production in Streptomyces coelicolor M511 and SJM1 mutants. J Microbiol Biotechnol. 2013;23(10):1454–1459.
  • Hayes A, Hobbs G, Smith C, et al. Environmental signals triggering methylenomycin production by Streptomyces coelicolor A3(2). J Bacteriol. 1997;179(17):5511–5515.
  • Kim YJ, Song JY, Moon MH, et al. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin productionin Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol. 2007;76(5):1119–1130.
  • Pan L, Chen XS, Liu MM, et al. Efcient production of ε-poly-l-lysine from glucose by two-stage fermentation using pH shock strategy. Process Biochem. 2017;63:8–15.
  • Jiang J, Sun YF, Tang X, et al. Alkaline pH shock enhanced production of validamycin a in fermentation of Streptomyces hygroscopicus. Bioresour Technol. 2018;249:234–240.
  • Yeo KJ, Hong YS, Jee JG, et al. Mechanism of the pH-induced conformational change in the sensor domain of the DraK histidine kinase via the E83, E105, and E107 residues. PLoS One. 2014;9(9):e107168.
  • Kim YJ, Moon MH, Lee JS, et al. Roles of putative sodium-hydrogen antiporter (SHA) genes in S. coelicolor A3(2) culture with pH variation. J Microbiol Biotechnol. 2011;21(9):979–987.
  • Pan L, Chen X, Wang K, et al. Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. J Ind Microbiol Biotechnol. 2019;46(12):1781–1792.
  • Shioya S, Morikawa M, Kajihara Y, et al. Optimization of agitation and aeration conditions for maximum virginiamycin production. Appl Microbiol Biotechnol. 1999;51(2):164–169.
  • Mehmood N, Olmos E, Goergen JL, et al. Oxygen supply controls the onset of pristinamycins production by Streptomyces pristinaespiralis in shaking flasks. Biotechnol Bioeng. 2011;108(9):2151–2161.
  • Kaiser D, Onken U, Sattler I, et al. Influence of increased dissolved oxygen concentration on the formation of secondary metabolites by manumycin-producing Streptomyces parvulus. Appl Microbiol Biotechnol. 1994;41(3):309–312.
  • MartinsL RA, Guimarães M, Pamboukian CR, et al. The effect of dissolved oxygen concentration control on cell growth and antibiotic retamycin production in Streptomyces olindensis So20 fermentations. Braz J Chem Eng. 2004;21(2): 185–192.
  • Gallagher KA, Wanger G, Henderson J, et al. Ecological implications of hypoxia-triggered shifts in secondary metabolism. Environ Microbiol. 2017;19(6):2182–2191.
  • Gamboa-Suasnavart RA, Valdez-Cruz NA, Gaytan-Ortega G, et al. The metabolic switch can be activated in a recombinant strain of Streptomyces lividans by a low oxygen transfer rate in shake flasks. Microb Cell Fact. 2018;17(1):189.
  • Nieselt K, Battke F, Herbig A, et al. The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics. 2010;11:10.
  • Brakhage AA, Schroeckh V. Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1):15–22.
  • Ueda K, Kawai S, Ogawa HO, et al. Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J Antibiot (Tokyo). 2000;53(9):979–982.
  • Wang W, Yu L, Zhou P. Effects of different fungal elicitors on growth, total carotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous. Bioresour Technol. 2006;97(1):26–31.
  • Pettit RK. Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol. 2011;4(4):471–478.
  • Wang D, Yuan J, Gu S, et al. Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2. Appl Microbiol Biotechnol. 2013;97(12):5527–5534.
  • Shi S, Tao Y, Liu W. Effects of fungi fermentation broth on natamycin production of Streptomyces. Prog Appl Microbiol. 2017;1:15–22.
  • Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol. 2014;68(1):377–393.
  • Wang D, Wei L, Zhang Y, et al. Physicochemical and microbial responses of Streptomyces natalensis HW-2 to fungal elicitor. Appl Microbiol Biotechnol. 2017;101(17):6705–6712.
  • Zhao X, Pang H, Wang S, et al. Structural basis for prokaryotic calcium-mediated regulation by a Streptomyces coelicolor calcium binding protein. Protein Cell. 2010;1(8):771–779.
  • Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52.
  • Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86(1):715–748.
  • Kinkel LL, Schlatter DC, Bakker MG, et al. Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol. 2012;163(8):490–499.
  • Charusanti P, Fong NL, Nagarajan H, et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One. 2012;7(3):e33727.
  • Imai Y, Sato S, Tanaka Y, et al. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl Environ Microbiol. 2015;81(11):3869–3879.
  • Onaka H, Mori Y, Igarashi Y, et al. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77(2):400–406.
  • Hoshino S, Zhang L, Awakawa T, et al. Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot (Tokyo). 2015;68(5):342–344.
  • Hoshino S, Wakimoto T, Onaka H, et al. Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org Lett. 2015;17(6):1501–1504.
  • Sugiyama R, Nishimura S, Ozaki T, et al. Discovery and total synthesis of streptoaminals: antimicrobial [5,5]-spirohemiaminals from the combined-culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew Chem Int Ed Engl. 2016;55(35):10278–10282.
  • Sugiyama R, Nishimura S, Ozaki T, et al. 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett. 2015;17(8):1918–1921.
  • Zou Z, Du D, Zhang Y, et al. A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol. 2014;94(3):490–505.
  • Nodwell JR. Are you talking to me? A possible role for γ-butyrolactones in interspecies signalling. Mol Microbiol. 2014;94(3):483–485.
  • Westhoff S, Kloosterman AM, Hoesel S, et al. Competition sensing changes antibiotic production in Streptomyces. mBio. 2021;12(1): e02729–e02720.
  • D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–824.
  • Kanth BK, Jnawali HN, Niraula NP, et al. Superoxide dismutase (SOD) genes in Streptomyces peucetius: effects of SODs on secondary metabolites production. Microbiol Res. 2011;166(5):391–402.
  • Hahn JS, Oh SY, Chater KF, et al. H2O2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J Biol Chem. 2000;275(49):38254–38260.
  • Beites T, Pires SDS, Santos CL, et al. Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448: modulation of pimaricin production by intracellular ROS. PLoS One. 2011;6(11):e27472.
  • Kwon HJ, Kim SU. Enhanced biosynthesis of clavulanic acid in Streptomyces clavuligerus due to oxidative challenge by redox-cycling agents. Appl Microbiol Biotechnol. 1998;49(1):77–83.
  • Kwon HJ, Kim SU. Molecular basis for enhanced biosynthesis of clavulanic acid by a redox-cycling agent, phenazine methosulfate, in Streptomyces clavuligerus. Appl Microbiol Biotechnol. 1999;53(1):57–62.
  • Dubbs JM, Mongkolsuk S. Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol. 2012;194(20):5495–5503.
  • Shin JH, Singh AK, Cheon DJ, et al. Activation of the SoxR regulon in Streptomyces coelicolor by the extracellular form of the pigmented antibiotic actinorhodin. J Bacteriol. 2011;193(1):75–81.
  • Cruz RD, Gao Y, Penumetcha S, et al. Expression of the Streptomyces coelicolor SoxR regulon is intimately linked with actinorhodin production. J Bacteriol. 2010;192(24):6428–6438.
  • Cheng Y, Yang R, Lyu M, et al. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Appl Environ Microbiol. 2018;84(22):e01503–e01518.
  • Zeng X, Chen XS, Gao Y, et al. Continuously high reactive oxygen species generation decreased the specific ϵ-poly- l -lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source. Process Biochem. 2015;50(12):1993–2003.
  • Yan P, Sun H, Lu P, et al. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione. Bioprocess Biosyst Eng. 2018;41(1):129–134.
  • Romero D, Traxler MF, Lopez D, et al. Antibiotics as signal molecules. Chem Rev. 2011;111(9):5492–5505.
  • Chiang Y, Chang S, Oakley BR, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol. 2011;15(1):137–143.
  • Yim G, Wang HH, Davies J. Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci. 2007;362(1483):1195–1200.
  • Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol. 2009;27(5):462–464.
  • Tanaka Y, Tokuyama S, Ochi K. Activation of secondary metabolite-biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot (Tokyo). 2009;62(12):669–673.
  • Tanaka Y, Kasahara K, Hirose Y, et al. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol. 2013;195(13):2959–2970.
  • Ma Z, Luo S, Xu X, et al. Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628. J Ind Microbiol Biotechnol. 2016;43(4):463–471.
  • Wang L, Li S, Zhao J, et al. Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Microbiologyopen. 2019;8(5):e00728.
  • Inaoka T, Ochi K. Activation of dormant secondary metabolism neotrehalosadiamine synthesis by an RNA polymerase mutation in Bacillus subtilis. Biosci Biotechnol Biochem. 2011;75(4):618–623.
  • Shentu X, Liu N, Tang G, et al. Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. J Antibiot (Tokyo). 2016;69(5):406–410.
  • Covington BC, Spraggins JM, Ynigez-Gutierrez AE, et al. Response of secondary metabolism of hypogean actinobacterial genera to chemical and biological stimuli. Appl Environ Microbiol. 2018;84(19):e01125–e01118.
  • Ozaki T, Yamashita K, Goto Y, et al. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun. 2017;8:14207.
  • Onaka H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot (Tokyo). 2017;70(8):865–870.
  • Onaka H. Biosynthesis of indolocarbazole and goadsporin, two different heterocyclic antibiotics produced by actinomycetes. Biosci Biotechnol Biochem. 2009;73(10):2149–2155.
  • Onaka H, Tabata H, Igarashi Y, et al. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes. I. Purification and characterization. J Antibiot (Tokyo). 2001;54(12):1036–1044.
  • Onaka H, Nakaho M, Hayashi K, et al. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiology (Reading). 2005;151(Pt 12):3923–3933.
  • Xu F, Nazari B, Moon K, et al. Discovery of a cryptic antifungal compound from Streptomyces albus J1074 using high-throughput elicitor screens. J Am Chem Soc. 2017;139(27):9203–9212.
  • Seyedsayamdost MR. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci U S A. 2014;111(20):7266–7271.
  • Moon K, Xu F, Zhang C, et al. Bioactivity-HiTES unveils cryptic antibiotics encoded in actinomycete bacteria. ACS Chem Biol. 2019;14(4):767–774.
  • Xu F, Wu Y, Zhang C, et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol. 2019;15(2):161–168.
  • Yuan C, Guo YH, Wang HY, et al. Allelopathic polyketides from an endolichenic fungus Myxotrichum SP. by using OSMAC strategy. Sci Rep. 2016;6(1):19350.
  • Hemphill CFP, Sureechatchaiyan P, Kassack MU, et al. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot (Tokyo). 2017;70(6):726–732.
  • Selegato DM, Freire RT, Pilon AC, et al. Improvement of bioactive metabolite production in microbial cultures – a systems approach by OSMAC and deconvolution-based 1 HNMR quantification. Magn Reson Chem. 2019;57(8):458–471.
  • Yue Y, Yu H, Li R, et al. Exploring the antibacterial and antifungal potential of jellyfish-associated marine fungi by cultivation-dependent approaches. PLoS One. 2015;10(12):e0144394.
  • Romano S, Jackson S, Patry S, et al. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Mar Drugs. 2018;16(7):244.
  • Zazopoulos E, Huang K, Staffa A, et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol. 2003;21(2):187–190.
  • Pan R, Bai X, Chen J, et al. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front Microbiol. 2019;10(294):294.
  • Wu Q, Zhang G, Wang B, et al. Production and identification of inthomycin B produced by a deep-sea sediment-derived Streptomyces sp. YB104 based on cultivation-dependent approach. Curr Microbiol. 2018;75(7):942–951.
  • Lopez JAV, Nogawa T, Futamura Y, et al. Nocardamin glucuronide, a new member of the ferrioxamine siderophores isolated from the ascamycin-producing strain Streptomyces sp. 80H647. J Antibiot (Tokyo). 2019;72(12):991–995.
  • McAlpine JB, Bachmann BO, Piraee M, et al. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod. 2005;68(4):493–496.
  • Sproule A, Correa H, Decken A, et al. Terrosamycins a and B, bioactive polyether ionophores from Streptomyces sp. RKND004 from Prince Edward Island sediment. Mar Drugs. 2019;17(6):347.
  • Tangerina MMP, Furtado LC, Leite VMB, et al. Metabolomic study of marine Streptomyces sp.: secondary metabolites and the production of potential anticancer compounds. PLoS One. 2020;15(12):e0244385.
  • Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol. 2014;41(2):175–184.
  • Almeida E, Kaur N, Jennings L, et al. Genome mining coupled with OSMAC-based cultivation reveal differential production of surugamide a by the marine sponge isolate Streptomyces sp. SM17 when compared to its terrestrial relative S. albidoflavus J1074. Microorganisms. 2019;7(10):394.
  • Fang Q, Wu L, Urwald C, et al. Genomic scanning enabling discovery of a new antibacterial bicyclic carbamate-containing alkaloid. Synth Syst Biotechnol. 2021;6(1):12–19.
  • Machushynets NV, Wu C, Elsayed SS, et al. Discovery of novel glycerolated quinazolinones from Streptomyces sp. MBT27. J Ind Microbiol Biotechnol. 2019;46(3–4):483–492.
  • Ding H, Wang J, Zhang D, et al. Derivatives of holomycin and cyclopropaneacetic acid from Streptomyces sp. DT-A37. Chem Biodivers. 2017;14(9):e1700140.
  • English A, Boufridi A, Quinn RJ, et al. Evaluation of fermentation conditions triggering increased antibacterial activity from a near-shore marine intertidal environment-associated Streptomyces species. Synth Syst Biotechnol. 2017;2(1):28–38.
  • Rigali S, Anderssen S, Naome A, et al. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol. 2018;153:24–34.
  • Gordon G. Biological activity of recently discovered halogenated marine natural products. Mar Drugs. 2015;13(7):4044–4136.