497
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Challenges and opportunities for the production of lactic acid bacteria inoculants aimed for ensiling processes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1028-1044 | Received 06 Mar 2020, Accepted 03 Jul 2021, Published online: 27 Oct 2021

References

  • Böttger C, Silacci P, Dohme-Meier F, et al. The effect of herbage conservation method on protein value and nitrogen utilization in dairy cows. Agriculture. 2019;9(6):118.
  • Daniel JLP, Bernardes TF, Jobim CC, et al. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019;74(2):188–200.
  • Khota W, Pholsen S, Higgs D, et al. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J Dairy Sci. 2016;99(12):9768–9781.
  • Naciones Unidas. Agenda 2030 y los Objetivos de Desarrollo Sostenible Una oportunidad para América Latina y el Caribe. Santiago; 2018. Available from: https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf
  • Weinberg ZG. Preservation of forage crops by solid-state lactic acid fermentation-ensiling. In: Pandey A, Soccol CR, Larroche C, editors. Curr dev solid-state ferment. New York (NY): Springer; 2008. p. 443–467.
  • Brassley P. Silage in Britain, 1880-1990: the delayed adoption of an innovation. Agric Hist Rev. 1996;44:63–87.
  • Fierro R, Chamorro D, Pazmiño J, et al. Identification and characterization of lactobacillus bacterial genera most prevalent used to improve silage digestibility of important forage species for livestock sector. J Appl Pharm Sci. 2016;6:035–041.
  • Amado IR, Fuciños C, Fajardo P, et al. Pediocin SA-1: a selective bacteriocin for controlling Listeria monocytogenes in maize silages. J Dairy Sci. 2016;99(10):8070–8080.
  • Teixeira Franco R, Buffière P, Bayard R. Ensiling for biogas production: critical parameters. A review. Biomass Bioenergy. 2016;94:94–104.
  • Limin KJ. Potential factors that may limit the effectiveness of silage additives. XV Int Silage Conf.; 2009. p. 37–45.
  • Beiyi L, Hailin H, Hongru G, et al. Dynamics of a microbial community during ensiling and upon aerobic exposure in lactic acid bacteria inoculation-treated and untreated barley silages. Bioresour Technol. 2019;273:212–219.
  • Dong-Xia L, Kui-Kui N, Ying-Chao Z, et al. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality. J Integr Agric. 2018;17(12):2768–2782.
  • Fabiszewska AU, Zielińska KJ, Wróbel B. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World J Microbiol Biotechnol. 2019;35(5):1–8.
  • Silva LA, Lopes Neto JHP, Cardarelli HR. Exopolysaccharides produced by Lactobacillus plantarum: technological properties, biological activity, and potential application in the food industry. Ann Microbiol. 2019;69(4):321–328.
  • Jalč D, Lauková A, Simonová M, et al. The use of bacterial inoculants for grass silage: their effects on nutrient composition and fermentation parameters in grass silages. Czech J Anim Sci. 2009;54(No. 2):84–91.
  • Yitbarek MB, Tamir B. Silage additives: review. OJAppS. 2014;04(05):258–274.
  • Demichelis F, Pleissner D, Fiore S, et al. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour Technol. 2017;241:508–516.
  • Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod. 2018;181:72–87.
  • Mora-Villalobos JA, Montero-Zamora J, Barboza N, et al. Multi-Product lactic acid bacteria fermentations: fermentation. Fermentation. 2020;6(1):23–21.
  • Yuan XJ, Guo G, Wen AY, et al. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Anim Feed Sci Technol. 2015;207:41–50.
  • Zhang Q, Yu Z, Wang X. Isolating and evaluating lactic acid bacteria strains with or without sucrose for effectiveness of silage fermentation. Grassl Sci. 2015;61(3):167–176.
  • Keles G, Demirci U. The effect of homofermentative and heterofermentative lactic acid bacteria on conservation characteristics of baled triticale-Hungarian vetch silage and lamb performance. Anim Feed Sci Technol. 2011;164(1–2):21–28.
  • Saarisalo E, Skyttä E, Haikara A, et al. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J Appl Microbiol. 2007;102(2):327–336.
  • Rouch DA, Roupas P, Roginski H. True protein value of milk and dairy products. Aust J Dairy Technol. 2007;62:26–30.
  • Licitra G, Hernandez TM, Van Soest PJ. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim Feed Sci Technol. 1996;57(4):347–358.
  • Gao P, Li Z, Zan L, et al. A non-protein nitrogen index for discriminating raw milk protein adulteration via the kjeldahl method. Anal Methods. 2015;7(21):9166–9170.
  • Chen MM, Liu QH, Xin GR, et al. Characteristics of lactic acid bacteria isolates and their inoculating effects on the silage fermentation at high temperature. Lett Appl Microbiol. 2013;56(1):71–78.
  • da Silva NC, Nascimento CF, Nascimento FA, et al. Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. J Dairy Sci. 2018;101(5):4158–4167.
  • Wang S, Dong Z, Li J, et al. Effects of storage temperature and combined microbial inoculants on fermentation end products and microbial populations of Italian ryegrass (Lolium multiflorum lam.) silage. J Appl Microbiol. 2018;125(6):1682–1691.
  • Queiroz OCM, Ogunade IM, Weinberg Z, et al. Silage review: foodborne pathogens in silage and their mitigation by silage additives. J Dairy Sci. 2018;101(5):4132–4142.
  • Ogunade IM, Jiang Y, Kim DH, et al. Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. J Dairy Sci. 2017;100(3):1780–1794.
  • Kara Ali M, Kacem Chaouche N. Isolation of lactobacillus strain from curdled milk and investigation of their antimycotoxinogen activity. J Food Process Preserv. 2019;43(6):e13841–7.
  • Chiocchetti GM, Jadán-Piedra C, Monedero V, et al. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Crit Rev Food Sci Nutr. 2019;59(10):1534–1545.
  • Woraprayote W, Malila Y, Sorapukdee S, et al. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016;120:118–132.
  • Beshkova D, Frengova G. Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci. 2012;12(4):419–432.
  • De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007;13(4):194–199.
  • Amado IR, Fuciños C, Fajardo P, et al. Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Anim Feed Sci Technol. 2012;175(3–4):137–149.
  • Soundharrajan I, Kim D, Kuppusamy P, et al. Probiotic and triticale silage fermentation potential of Pediococcus pentosaceus and Lactobacillus brevis and their impacts on pathogenic bacteria. Microorganisms. 2019;7(9):318.
  • Doyle N, Mbandlwa P, Kelly WJ, et al. Use of lactic acid bacteria to reduce methane production in ruminants, a Critical Review. Front Microbiol. 2019;10;1–13
  • Weinberg ZG, Muck RE, Weimer PJ, et al. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl Biochem Biotechnol – Part A Enzym Eng Biotechnol. 2004;118:1–9.
  • Marcó MB, Garneau JE, Tremblay D, et al. Characterization of two virulent phages of Lactobacillus plantarum. Appl Environ Microbiol. 2012;78(24):8719–8734.
  • Marcelli B, Karsens H, Nijland M, et al. Employing lytic phage-mediated horizontal gene transfer in Lactococcus lactis. PLOS One. 2020;15(9):e0238988–20.
  • Sharma V, Mishra HN. Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT – Food Sci Technol. 2014;59(2):1123–1128.
  • Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 2016;236:176–192.
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol. 2011;156(4):286–301.
  • Carvalho BF, Ávila CLS, Pinto JC, et al. Microbiological and chemical profile of sugar cane silage fermentation inoculated with wild strains of lactic acid bacteria. Anim Feed Sci Technol. 2014;195:1–13.
  • Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev. 1996;19(1):53–68.
  • Rossi F, Rudella A, Marzotto M, et al. Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effects on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie van leeuwenhoek. Int J Gen Mol Microbiol. 2001;80:139–147.
  • Heinl S, Grabherr R. Systems biology of robustness and flexibility: Lactobacillus buchneri-A show case. J Biotechnol. 2017;257:61–69.
  • Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. 2012;2:86.
  • Calomme M, Hu J, Van Den Branden K, et al. Seleno-lactobacillus. An organic selenium source . Biol Trace Elem Res. 1995;47(1–3):379–383.
  • Lee MRF, Fleming HR, Cogan T, et al. Assessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silos. Anim Feed Sci Technol. 2019;253:125–134.
  • Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci. 2015;2:106–117.
  • Contreras-Govea F, Muck R. Microbial Inoculants for Silage. Focus forage. 2006. [cited 2019 Jun 23]. p. 1–4. Available from: http://www.uwex.edu/ces/crops/uwforage/Microbial_Inoculants-FOF.htm.
  • Weiss K, Kroschewski B, Auerbach H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J Dairy Sci. 2016;99(10):8053–8069.
  • Krooneman J, Faber F, Alderkamp AC, et al. Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int J Syst Evol Microbiol. 2002;52(Pt 2):639–646.
  • Blajman JE, Páez RB, Vinderola CG, et al. A Meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. J Appl Microbiol. 2018;125(6):1655–1669.
  • Zielińska KJ, Fabiszewska AU. Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains. World J Microbiol Biotechnol. 2017;34(1):9–8.
  • Ueno S, Ohashi A. Method for producing lactic acid bacteria medium, method for culturing lactic acid bacteria using same, and lactic acid bacteria powder using lactic acid bacteria obtained by the said method. Munich: European Patent Office; 2017. p. 1–29.
  • Chang CP, Liew SL. Growth medium optimization for biomass production of a probiotic bacterium, Lactobacillus rhamnosus ATCC 7469. J Food Biochem. 2013;37(5):536–543.
  • Miller C, Fosmer A, Rush B, et al. Industrial production of lactic acid. In: Murray Moo-Young, editor. Compr biotechnol second Ed. Second Edi. Amsterdam: Elsevier B.V.; 2011. p. 179–188.
  • Waites MJ, Morgan, NL, Rockey JS, et al., Microbial biomass production. In: Waites MJ, Morgan NL, Rockey JS, et al. editors. Ind microbiol an introd. 1st ed. Oxford: Blackwell Science Ltd; 2001.
  • Dedenaro G, Costa S, Rugiero I, et al. Valorization of Agri-Food waste via fermentation: production of L-lactic acid as a building block for the synthesis of biopolymers. Appl Sci. 2016;6(12):379.
  • Vidra A, Tóth AJ, Németh Á. Lactic acid production from cane molasses. Liq Waste Recover. 2017;2(1):13–16.
  • Gutiérrez-Cortés C, Suarez H, Buitrago G, et al. Enhanced bacteriocin production by Pediococcus pentosaceus 147 in Co-culture with Lactobacillus plantarum LE27 on Cheese Whey Broth. Front Microbiol. 2018;9:1–12.
  • Boguta AM, Bringel F, Martinussen J, et al. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks. Microb Cell Fact. 2014;13(1):97.
  • Reddy LV, Kim YM, Yun JS, et al. L-Lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1. Bioresour Technol. 2016;209:187–194.
  • Djukić-Vuković A, Mladenović D, Radosavljević M, et al. Wastes from bioethanol and beer productions as substrates for L(+) lactic acid production – a comparative study. Waste Manag. 2016;48:478–482.
  • Bernardo MP, Coelho LF, Sass DC, et al. L-(+)-lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Braz J Microbiol. 2016;47(3):640–646.
  • Pejin J, Radosavljević M, Kocić-Tanackov S, et al. Fed-batch L-(+)-lactic acid fermentation of brewer’s spent grain hydrolysate. J Inst Brew. 2017;123(4):537–543.
  • Mladenović DD, Djukić-Vuković AP, Kocić-Tanackov SD, et al. Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. J Chem Technol Biotechnol. 2016;91(9):2474–2479.
  • Djukić-Vuković AP, Mojović LV, Vukašinović-Sekulić MS, et al. Effect of different fermentation parameters on L-lactic acid production from liquid distillery stillage. Food Chem. 2012;134(2):1038–1043.
  • Garsa AK, Kumariya R, Kumar A, et al. Industrial cheese whey utilization for enhanced production of purified pediocin PA-1. LWT – Food Sci Technol. 2014;59(2):656–665.
  • Chaves de Lima E de L, de Moura Fernandes J, Cardarelli HR. Optimized fermentation of goat cheese whey with Lactococcus lactis for production of antilisterial bacteriocin-like substances. LWT – Food Sci Technol. 2017;84:710–716.
  • Gutiérrez Cortés C. Utilización de un co – cultivo en la producción de bacteriocinas con potencial aplicación en alimentos. Bogotá, D.C.: Universidad Nacional de Colombia; 2018.
  • Patrignani F, Siroli L, Serrazanetti DI, et al. Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Res Int. 2017;97:250–257.
  • Oonkhanond B, Jonglertjunya W, Srimarut N, et al. Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification, fermentation, and ex-situ nanofiltration. J Environ Chem Eng. 2017;5(3):2533–2541.
  • Tosungnoen S, Chookietwattana K, Dararat S. Lactic acid production from Repeated-Batch and simultaneous saccharification and fermentation of cassava starch wastewater by amylolytic Lactobacillus Plantarum MSUL 702. APCBEE Procedia. 2014;8:204–209.
  • Aguirre-Ezkauriatza EJ, Aguilar-Yáñez JM, Ramírez-Medrano A, et al. Production of probiotic biomass (Lactobacillus casei) in goat milk whey: comparison of batch, continuous and fed-batch cultures. Bioresour Technol. 2010;101(8):2837–2844.
  • Abdul Karim MI, Mel M, Jamal P, et al. Media screening of lactic acid fermentation using Lactobacillus rhamnosus. J Agric Technol. 2006;:2(2)203–210.
  • Möller J, Kuchemüller KB, Steinmetz T, et al. Model-assisted design of experiments as a concept for knowledge-based bioprocess development. Bioprocess Biosyst Eng. 2019;42(5):867–882.
  • Mauerhofer L, Pappenreiter P, Paulik C, et al. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol. 2019;64(3):321–360.
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. 2013;31(6):877–902.
  • Chen W. Hang F. Lactic acid bacteria starter. In: Chen W, editor. Lact acid bact bioeng ind appl. Singapore: Springer Nature Singapore Pte Ltd. and Science Press; 2019. p. 93–143.
  • Koutinas AA, Malbranque F, Wang R, et al. Development of an oat-based biorefinery for the production of L(+)-lactic acid by Rhizopus oryzae and various value-added coproducts. J Agric Food Chem. 2007;55(5):1755–1761.
  • El-Halwagi LP, Dansereau MM, Stuart PR. Value-Chain management considerations for the biorefinery. In: El-Halwagi MM, Stuart PR, editors. Integr biorefineries des anal optim. Boca Ratón, FL: CRC Press Taylor & Francis group; 2013. p. 195–249.
  • Habash R. Green engineering innovation, entrepreneurship and design. Boca Ratón, FL: CRC Press Taylor & Francis group; 2018.
  • Cui S, Zhao J, Liu X, et al. Maximum-biomass prediction of homofermentative lactobacillus. J Biosci Bioeng. 2016;122(1):52–57.
  • Jones JA, Wang X. Use of bacterial co-cultures for the efficient production of chemicals. Curr Opin Biotechnol. 2018;53:33–38.
  • Bader J, Mast-Gerlach E, Popović MK, et al. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol. 2010;109(2):371–387.
  • Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng. 2016;37:114–121.
  • Zhang Y, Vadlani PV. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng. 2015;119(6):694–699.
  • Somkuti GA, Steinberg DH. Pediocin production in milk by Pediococcus acidilactici in co-culture with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol. 2010;37(1):65–69.
  • Gaudreau H, Renard N, Champagne CP, et al. The evaluation of mixtures of yeast and potato extracts in growth media for biomass production of lactic cultures. Can J Microbiol. 2002;48(7):626–634.
  • Nath S. Product recovery from the cultures. In: Villadsen J, editor. Fundam bioeng. 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 381–392.
  • Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng. 2015;119(1):10–18.
  • Reuss M. Application of dynamic models for optimal redesign of cell factories. In: Villadsen J, editor. Fundam bioeng. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 233–291.
  • Cira LA, Huerta S, Hall GM, et al. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 2002;37(12):1359–1366.
  • Crater JS, Lievense JC. Scale-up of industrial microbial processes. FEMS Microbiol Lett. 2018;365:1–5.
  • Velayudhan A. Titchener-Hooker N. Analytical measurement methods for bioreactor monitoring. In: Mandenius C-F, editor. Bioreact des oper nov appl. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.; 2016. p. 355–390.
  • Scarff M, Arnold SA, Harvey LM, et al. Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit Rev Biotechnol. 2006;26(1):17–39.
  • Coulibaly I, Dubois-Dauphin R, Danthine S, et al. Techniques de séchage des starters lactiques et mécanismes affectant la viabilité cellulaire suite à la lyophilisation. Biotechnol Agron Soc Environ. 2011;15:287–299.
  • Mattila-Sandholm T, Myllärinen P, Crittenden R, et al. Technological challenges for future probiotic foods. Int Dairy J. 2002;12(2–3):173–182.
  • Reddy KBPK, Madhu AN, Prapulla SG. Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria: original research. Int J Dairy Technol. 2009;62(2):240–248.
  • Yoha KS, Moses JA, Anandharamakrishnan C. Conductive hydro drying through refractance window drying–an alternative technique for drying of Lactobacillus plantarum (NCIM 2083). Dry Technol. 2019;0:1–11.
  • Aragón-Rojas S, Quintanilla-Carvajal MX, Hernández-Sánchez H, et al. Encapsulation of Lactobacillus fermentum K73 by refractance window drying. Sci Rep. 2019;9(1):15.
  • Wee YJ, Kim HO, Yun JS, et al. Pilot-scale lactic acid production via batch culturing of lactobacillus sp. RKY2 using corn steep liquor as a nitrogen source. Food Technol Biotechnol. 2006;44:293–298.
  • Herrera Araújo F, Ardila Lara MA, Gutiérrez Gil E, et al. ODS en Colombia: Los retos Para 2030. 2018. p. 72.
  • Bertello F. Silajes inoculados para más producción de carne y leche. La Nación. 2011. [cited 2019 Nov 18]. p. 1. Available from: https://www.lanacion.com.ar/economia/campo/silajes-inoculados-para-mas-produccion-de-carne-y-leche-nid1433118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.