1,165
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

CRISPR-Cas system in microbial hosts for terpenoid production

ORCID Icon
Pages 1116-1133 | Received 13 Nov 2020, Accepted 25 Jul 2021, Published online: 09 Feb 2022

References

  • Quin MB, Flynn CM, Schmidt-Dannert C. Traversing the fungal terpenome. Nat Prod Rep. 2014;31(10):1449–1473.
  • Li S, Niu H, Qiao Y, et al. Terpenoids isolated from Chinese liverworts Lepidozia reptans and their anti-inflammatory activity. Bioorg Med Chem. 2018;26(9):2392–2400.
  • Yamada Y, Kuzuyama T, Komatsu M, et al. Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA. 2015;112(3):857–862.
  • Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 2005;10(12):594–602.
  • Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3(7):408–414.
  • Mewalal R, Rai DK, Kainer D, et al. Plant-derived terpenes: a feedstock for specialty biofuels. Trends Biotechnol. 2017;35(3):227–240.
  • Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol. 2019;103(14):5501–5516.
  • Zhang MM, Wang Y, Ang EL, et al. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep. 2016;33(8):963–987.
  • Schempp FM, Drummond L, Buchhaupt M, et al. Microbial cell factories for the production of terpenoid flavor and fragrance compounds. J Agric Food Chem. 2018;66(10):2247–2258.
  • Wilson BAP, Thornburg CC, Henrich CJ, et al. Creating and screening natural product libraries. Nat Prod Rep. 2020;37(7):893–918.
  • Chu LL, Dhakal D, Shin HJ, et al. Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities. Front Microbiol. 2018;9:1671.
  • Zhao X, Park SY, Yang D, et al. Synthetic biology for natural compounds. Biochemistry. 2019;58(11):1454–1456.
  • Koonin EV, Makarova KS. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep. 2009;1:95.
  • Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell. 2010;37(1):7–19.
  • Jakočiūnas T, Jensen MK, Keasling JD. System-level perturbations of cell metabolism using CRISPR/Cas9. Curr Opin Biotechnol. 2017;46:134–140.
  • Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.
  • Jiang Y, Qian F, Yang J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179.
  • Zwenger S, Basu C. C. Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev. 2008;3(1):1–7.
  • Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018;220(3):692–702.
  • Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.
  • Beran F, Kollner TG, Gershenzon J, et al. Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytol. 2019;223(1):52–67.
  • Attygalle AB, Wu X, Will KW. Biosynthesis of tiglic, ethacrylic, and 2-methylbutyric acids in a carabid beetle, pterostichus (hypherpes) californicus. J Chem Ecol. 2007;33(5):963–970.
  • Szczesniak O, Hestad KA, Hanssen JF, et al. Isovaleric acid in stool correlates with human depression. Nutr Neurosci. 2016;19(7):279–283.
  • Kozioł A, Stryjewska A, Librowski T, et al. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev Med Chem. 2014;14(14):1156–1168.
  • Marmulla R, Harder J. Microbial monoterpene transformations-a review. Front Microbiol. 2014;5:346.
  • Fraga BM. Natural sesquiterpenoids. Nat Prod Rep. 2011;28(9):1580–1610.
  • Edouarzin E, Horn C, Paudyal A, et al. Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. Microb Cell. 2020;7(6):146–159.
  • Ban Y, Xia T, Jing R, et al. Vitex diterpenoids: structural diversity and pharmacological activity. Curr Pharm Des. 2020;26(1):138–159.
  • Shirley HJ, Jamieson ML, Brimble MA, et al. A new family of sesterterpenoids isolated around the Pacific Rim. Nat Prod Rep. 2018;35(3):210–219.
  • Hill RA, Connolly JD. Triterpenoids. Nat Prod Rep. 2018;35(12):1294–1329.
  • Chu LL, Montecillo JAV, Bae H. Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Front Bioeng Biotechnol. 2020;8:139.
  • Arendt P, Pollier J, Callewaert N, et al. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms. Plant J. 2016;87(1):16–37.
  • Thapa HR, Naik MT, Okada S, et al. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in botryococcus braunii race L. Nat Commun. 2016;7:11198.
  • Song AA, Abdullah JO, Abdullah MP, et al. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production. FEMS Microbiol Lett. 2014;355(2):177–184.
  • Wang C, Liwei M, Park JB, et al. Microbial platform for terpenoid production. Front Microbiol. 2018;9:2460.
  • Gruchattka E, Hädicke O, Klamt S, et al. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact. 2013;12:84.
  • Banerjee A, Sharkey TD. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep. 2014;31(8):1043–1055.
  • Wang C, Chen Q, Fan D, et al. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in brassicaceae plants. Mol Plant. 2016;9(2):195–204.
  • Lichman BR, Kamileen MO, Titchiner GR, et al. Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat Chem Biol. 2019;15(1):71–79.
  • Christianson DW. Structural and chemical biology of terpenoid cyclases. Chem Rev. 2017;117(17):11570–11648.
  • Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–477.
  • Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol. 2017;2:17092.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821.
  • Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83.
  • Tong Y, Weber T, Lee SY. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep. 2019;36(9):1262–1280.
  • Huang L, Li Q, Zhang C, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol J. 2020;18(11):2164–2166.
  • Ji X, Zhao H, Zhu H, et al. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli. Appl Microbiol Biotechnol. 2020;104(12):5385–5393.
  • Kun RS, Meng J, Salazar-Cerezo S, et al. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass. Enzyme Microb Technol. 2020;136:109508.
  • Tang Y, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell Biosci. 2018;8:59.
  • Fonfara I, Richter H, Bratovic M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016;532(7600):517–521.
  • Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–529.
  • Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–1183.
  • La Russa MF, Qi LS. The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol. 2015;35(22):3800–3809.
  • Lee HH, Ostrov N, Wong BG, et al. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat Microbiol. 2019;4(7):1105–1113.
  • Chu LL, Pandey RP, Dhakal D, et al. Increased production of dicinnamoylmethane via improving cellular malonyl-CoA level by using a CRISPRi in Escherichia coli. Appl Biochem Biotechnol. 2020;190(1):325–340.
  • Morgan SL, Mariano NC, Bermudez A, et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun. 2017;8:15993.
  • Wang H, Nakamura M, Abbott TR, et al. CRISPR-mediated live imaging of genome editing and transcription. Science. 2019;365(6459):1301–1305.
  • Syding LA, Nickl P, Kasparek P, et al. CRISPR/Cas9 epigenome editing potential for rare imprinting diseases: a review. Cells. 2020;9(4):993.
  • Lee TC, Ziff EB. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF. J Biol Chem. 1999;274(2):595–606.
  • Margolin JF, Friedman JR, Meyer WK, et al. Krüppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA. 1994;91(10):4509–4513.
  • Jennings BH, Pickles LM, Wainwright SM, et al. Molecular recognition of transcriptional repressor motifs by the WD domain of the groucho/TLE corepressor. Mol Cell. 2006;22(5):645–655.
  • Richart AN, Brunner CI, Stott K, et al. Characterization of chromoshadow domain-mediated binding of heterochromatin protein 1α (HP1α) to histone H3. J Biol Chem. 2012;287(22):18730–18737.
  • Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41(15):7429–7437.
  • Pontrelli S, Chiu TY, Lan EI, et al. Escherichia coli as a host for metabolic engineering. Metab Eng. 2018;50:16–46.
  • Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–141.
  • Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol. 2007;73(4):1126–1135.
  • Gaj T, Gersbach CA, Barbas CF. Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.
  • Conrado RJ, Wu GC, Boock JT, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 2012;40(4):1879–1889.
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55.
  • Sakai Y, Abe K, Nakashima S, et al. Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol. 2014;3(3):152–162.
  • Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces Cerevisiae: new tools and their applications. Metab Eng. 2018;50:85–108.
  • Donohoue PD, Barrangou R, May AP. Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol. 2018;36(2):134–146.
  • Cho S, Shin J, Cho BK. Applications of CRISPR/Cas system to bacterial metabolic engineering. IJMS. 2018;19(4):1089.
  • Castineiras TS, Williams SG, Hitchcock AG, et al. E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol Lett. 2018;365(15):1–10.
  • Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018;200(7):e00580–17.
  • Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233–239.
  • Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. 2015;31:13–21.
  • Wu T, Ye L, Zhao D, et al. Membrane engineering – a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng. 2017;43(Pt A):85–91.
  • Alonso-Gutierrez J, Koma D, Hu Q, et al. Toward industrial production of isoprenoids in Escherichia coli: lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnol Bioeng. 2018;115(4):1000–1013.
  • Kim SK, Han GH, Seong W, et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng. 2016;38:228–240.
  • Tian T, Kang JW, Kang A, et al. Redirecting metabolic flux via combinatorial multiplex CRISPRi-mediated repression for isopentenol production in Escherichia coli. ACS Synth Biol. 2019;8(2):391–402.
  • Li S, Jendresen CB, Grünberger A, et al. Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab Eng. 2016;38:274–284.
  • Brignac-Huber LM, Park JW, Reed JR, et al. Cytochrome P450 organization and function are modulated by endoplasmic reticulum phospholipid heterogeneity. Drug Metab Dispos. 2016;44(12):1859–1866.
  • Xu X, Liu Y, Du G, et al. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020;38(7):779–796.
  • Deaner M, Alper HS. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. FEMS Yeast Res. 2019;19(7):foz076.
  • Laughery MF, Hunter T, Brown A, et al. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast. 2015;32(12):711–720.
  • DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336–4343.
  • Jakočiūnas T, Bonde I, Herrgård M, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng. 2015;28:213–222.
  • Miettinen K, Pollier J, Buyst D, et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun. 2017;8:14153.
  • Arendt P, Miettinen K, Pollier J, et al. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng. 2017;40:165–175.
  • Ai L, Guo W, Chen W, et al. The gal80 deletion by CRISPR-Cas9 in engineered Saccharomyces cerevisiae produces artemisinic acid without galactose induction. Curr Microbiol. 2019;76(11):1313–1319.
  • Tong YR, Su P, Guan HY, et al. Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in Tripterygium wilfordii. Biochem J. 2018;475(17):2713–2725.
  • Byrne LJ, O'Callaghan KJ, Tuite MF. Heterologous gene expression in yeast. Methods Mol Biol. 2005;308:51–64.
  • Amen T, Kaganovich D. Integrative modules for efficient genome engineering in yeast. Microb Cell. 2017;4(6):182–190.
  • Ronda C, Maury J, Jakočiunas T, et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:97.
  • EauClaire SF, Zhang J, Rivera CG, et al. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. J Ind Microbiol Biotechnol. 2016;43(7):1001–1015.
  • Hu ZF, Gu AD, Liang L, et al. Construction and optimization of microbial cell factories for sustainable production of bioactive dammarenediol-II glucosides. Green Chem. 2019;21(12):3286–3299.
  • Ni J, Zhang G, Qin L, et al. Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae. Synth Syst Biotechnol. 2019;4(2):79–85.
  • Jensen ED, Ferreira R, Jakočiūnas T, et al. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microb Cell Fact. 2017;16(1):46.
  • Lian J, HamediRad M, Hu S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nat Commun. 2017;8(1):1688.
  • Pfeifer-Sancar K, Mentz A, Rückert C, et al. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14:888.
  • Eggeling L, Bott M. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(8):3387–3394.
  • Krubasik P, Kobayashi M, Sandmann G. Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Eur J Biochem. 2001;268(13):3702–3708.
  • Krubasik P, Takaichi S, Maoka T, et al. Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Arch Microbiol. 2001;176(3):217–223.
  • Heider SA, Wendisch VF. Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J. 2015;10(8):1170–1184.
  • Heider SA, Peters-Wendisch P, Wendisch VF. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol. 2012;12:198.
  • Kang MK, Eom JH, Kim Y, et al. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnol Lett. 2014;36(10):2069–2077.
  • Frohwitter J, Heider SA, Peters-Wendisch P, et al. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. J Biotechnol. 2014;191:205–213.
  • Henke NA, Heider SAE, Peters-Wendisch P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar Drugs. 2016;14(7):124.
  • Henke NA, Wichmann J, Baier T, et al. Patchoulol production with metabolically engineered Corynebacterium glutamicum. Genes. 2018;9(4):219.
  • Li M, Xu S, Lu W. Engineering Corynebacterium glutamicum for geraniol production. Trans Tianjin Univ. 2021;27:377–384.
  • Cleto S, Jensen JV, Wendisch VF, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol. 2016;5(5):375–385.
  • Cho JS, Choi KR, Prabowo C, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–167.
  • Wang B, Hu Q, Zhang Y, et al. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Microb Cell Fact. 2018;17(1):63.
  • Omumasaba CA, Okai N, Inui M, et al. Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol. 2004;8(2):91–103.
  • Park J, Shin H, Lee SM, et al. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Microb Cell Fact. 2018;17(1):4.
  • Bormann ER, Eikmanns BJ, Sahm H. Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol. 1992;6(3):317–326.
  • Park J, Yu BJ, Choi JI, et al. Heterologous production of squalene from glucose in engineered Corynebacterium glutamicum using multiplex CRISPR interference and high-throughput fermentation. J Agric Food Chem. 2019;67(1):308–319.
  • Loeschcke A, Thies S. Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol. 2015;99(15):6197–6214.
  • Yang D, Kim WJ, Yoo SM, et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc Natl Acad Sci USA. 2018;115(40):9835–9844.
  • Hernandez-Arranz S, Perez-Gil J, Marshall-Sabey D, et al. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microb Cell Fact. 2019;18(1):152.
  • Nikel PI, de Lorenzo V. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. N Biotechnol. 2014;31(6):562–571.
  • Mi J, Becher D, Lubuta P, et al. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Fact. 2014;13:170.
  • Loffhagen N, Hartig C, Babel W. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci Biotechnol Biochem. 2004;68(2):317–323.
  • Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol. 2014;98(16):6933–6946.
  • Ramos JL, Sol Cuenca M, Molina-Santiago C, et al. Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev. 2015;39(4):555–566.
  • Mirata MA, Heerd D, Schrader J. Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem. 2009;44(7):764–771.
  • Beuttler H, Hoffmann J, Jeske M, et al. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol. 2011;89(4):1137–1147.
  • Kim SK, Yoon PK, Kim SJ, et al. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440. Microb Biotechnol. 2020;13(1):210–221.
  • Nikel PI, Romero-Campero FJ, Zeidman JA, et al. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor. mBio. 2015;6(2):e00340–15.
  • Liu H, Wei Z, Dominguez A, et al. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics. 2015;31(22):3676–3678.
  • Liu G, Zhang Y, Zhang T. Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J. 2020;18:35–44.
  • Xie S, Shen B, Zhang C, et al. sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One. 2014;9(6):e100448.
  • Blin K, Pedersen LE, Weber T, et al. CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol. 2016;1(2):118–121.
  • Chari R, Yeo NC, Chavez A, et al. sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol. 2017;6(5):902–904.
  • Labun K, Montague TG, Krause M, et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47(W1):W171–W174.
  • Rees HA, Yeh WH, Liu DR. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. 2019;10(1):2212.
  • Vigouroux A, Oldewurtel E, Cui L, et al. Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol Syst Biol. 2018;14(3):e7899.
  • Yan F, Wang W, Zhang J. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol Toxicol. 2019;35(6):489–492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.