1,972
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1099-1115 | Received 28 Apr 2021, Accepted 12 Aug 2021, Published online: 29 Nov 2021

References

  • Gargalo CL, Udugama I, Pontius K, et al. Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. J Ind Microbiol Biotechnol. 2020;47(11):947–964.
  • Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1.
  • 2020 global life sciences outlook [Internet]. https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/global-life-sciences-sector-outlook.html. : Deloitte. 2020. Available from: https://documents.deloitte.com/insights/2020globallifesciencesoutlook.
  • Baeshen NA, Baeshen MN, Sheikh A, et al. Cell factories for insulin production. Microb Cell Fact. 2014;13(1):141.
  • Spadiut O, Capone S, Krainer F, et al. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54–60.
  • Hutter S, Wolf M, Gao NP, et al. Glycosylation flux analysis of immunoglobulin G in Chinese hamster ovary perfusion cell culture. Processes. 2018;6(10):176.
  • O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv. 2020;43:107552.
  • Tejwani V, Andersen MR, Nam JH, et al. Glycoengineering in CHO cells: advances in systems biology. Biotechnol J. 2018;13(3):e1700234.
  • Pollock J, Ho SV, Farid SS. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng. 2013;110(1):206–219.
  • Kelley B. Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs. 2009;1(5):443–452.
  • FDA. Quality Considerations for Continuous Manufacturing Guidance for Industry: Center for Drug Evaluation and Research 2019. Available from: https://www.gmp-compliance.org/files/guidemgr/UCM632033.pdf.
  • Bachinger T, Riese U, Eriksson RK, et al. Electronic nose for estimation of product concentration in mammalian cell cultivation. Bioprocess Eng. 2000;23(6):637–642.
  • Bielser JM, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing – a critical review. Biotechnol Adv. 2018;36(4):1328–1340.
  • Chun BH, Bang WG, Park YK, et al. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells. Cytotechnology. 2001;37(3):179–187.
  • Hecht V, Duvar S, Ziehr H, et al. Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnol Prog. 2014;30(3):607–615.
  • Karst DJ, Serra E, Villiger TK, et al. Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J. 2016;110:17–26.
  • Sewell DJ, Turner R, Field R, et al. Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture. Biotechnol Bioeng. 2019;116(6):1315–1325.
  • Walther J, Lu J, Hollenbach M, et al. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch. Biotechnol J. 2019;14(2):e1700733.
  • Angepat S, Gorenflo VM, Piret JM. Accelerating perfusion process optimization by scanning non-steady-state responses. Biotechnol Bioeng. 2005;92(4):472–478.
  • Golabgir A, Gutierrez JM, Hefzi H, et al. Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow. Biotechnol Adv. 2016;34(5):621–633.
  • Downey B, Schmitt J, Beller J, et al. A system identification approach for developing model predictive controllers of antibody quality attributes in cell culture processes. Biotechnol Prog. 2017;33(6):1647–1661.
  • Zamani L, Lundqvist M, Zhang Y, et al. High cell density perfusion culture has a maintained exoproteome and metabolome. Biotechnol J. 2018;13(10):e1800036.
  • Hu S, Deng L, Wang H, et al. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells. Cytotechnology. 2011;63(3):247–258.
  • Himmelfarb P, Thayer PS, Martin HE. Spin filter culture: the propagation of mammalian cells in suspension. Science. 1969;164(3879):555–557.
  • Tolbert WR, Feder J, Kimes RC. Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro. 1981;17(10):885–890.
  • Lim Y, Wong NSC, Lee YY, et al. Engineering mammalian cells in bioprocessing – current achievements and future perspectives. Biotechnol Appl Biochem. 2010;55(4):175–189.
  • Bosco B, Paillet C, Amadeo I, et al. Alternating flow filtration as an alternative to internal spin filter based perfusion process: impact on productivity and product quality. Biotechnol Prog. 2017;33(4):1010–1014.
  • Gorenflo VM, Smith L, Dedinsky B, et al. Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng. 2002;80(4):438–444.
  • Iding K, Lutkemeyer D, Fraune E, et al. Influence of alterations in culture condition and changes in perfusion parameters on the retention performance of a 20 mum spinfilter during a perfusion cultivation of a recombinant CHO cell line in pilot scale. Cytotechnology. 2000;34(1–2):141–150.
  • Kwon T, Prentice H, Oliveira J, et al. Microfluidic cell retention device for perfusion of mammalian suspension culture. Sci Rep. 2017;7(1):6703.
  • Pohlscheidt M, Jacobs M, Wolf S, et al. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog. 2013;29(1):222–229.
  • Ryll T, Dutina G, Reyes A, et al. Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng. 2000;69(4):440–449.
  • Seth G, Hamilton RW, Stapp TR, et al. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng. 2013;110(5):1376–1385.
  • Xu S, Jiang R, Chen Y, et al. Impact of Pluronic® F68 on hollow fiber filter-based perfusion culture performance. Bioprocess Biosyst Eng. 2017;40(9):1317–1326.
  • Sun X, Zhang Y. A cell-detaching reactor for inoculation of anchorage-dependent CHO and vero cells between stepwise-expanded bioreactors. Biotechnol Lett. 2007;29(5):697–701.
  • Xu S, Gavin J, Jiang R, et al. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnol Prog. 2017;33(4):867–878.
  • Chen ZL, Wu BC, Liu H, et al. Temperature shift as a process optimization step for the production of pro-urokinase by a recombinant Chinese hamster ovary cell line in high-density perfusion culture. J Biosci Bioeng. 2004;97(4):239–243.
  • Demont A, Cole H, Marison IW. An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures. J Microencapsul. 2016;33(1):80–88. Feb
  • Lee SH, Lee HS, Lee MK, et al. Enhancement of tissue type plasminogen activator (tPA) production from recombinant CHO cells by low electromagnetic fields. J Microbiol Biotechnol. 2002;12(3):457–462.
  • Breguet V, Gugerli R, von Stockar U, et al. CHO immobilization in alginate/poly-l: -lysine microcapsules: an understanding of potential and limitations. Cytotechnology. 2007;53(1–3):81–93.
  • Han Y, Liu XM, Liu H, et al. Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng. 2006;102(5):430–435.
  • Cole HE, Demont A, Marison IW. The application of dielectric spectroscopy and biocalorimetry for the monitoring of biomass in immobilized mammalian cell cultures. Processes. 2015;3(2):384–405.
  • Hilal-Alnaqbi A, Hu AY, Zhang Z, et al. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol Appl Biochem. 2013;60(4):436–445.
  • Durrschmid MP, Landauer K, Simic G, et al. Comparison of fluidized bed and ultrasonic cell-retention systems for high cell density mammalian cell culture. Biotechnol Prog. 2003;19(3):1045–1048.
  • Singh V. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology. 1999;30(1–3):149–158.
  • Eibl R, Eibl D. Editorial: single-use technology in biopharmaceutical manufacturing. Eng Life Sci. 2014;14(3):236–237.
  • Clincke MF, Molleryd C, Zhang Y, et al. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Biotechnol Prog. 2013;29(3):754–767.
  • Clincke MF, Molleryd C, Samani PK, et al. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: applications for antibody production and cryopreservation. Biotechnol Prog. 2013;29(3):768–777.
  • Zhan CJ, Hagrot E, Brandt L, et al. Study of hydrodynamics in wave bioreactors by computational fluid dynamics reveals a resonance phenomenon. Chem Eng Sci. 2019;193:53–65.
  • Meuwly F, Loviat F, Ruffieux PA, et al. Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks. Biotechnol Bioeng. 2006;93(4):791–800.
  • Meuwly F, Papp F, Ruffieux PA, et al. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol. 2006;122(1):122–129.
  • Meuwly F, von Stockar U, Kadouri A. Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells. Cytotechnology. 2004;46(1):37–47.
  • Meuwly F, Weber U, Ziegler T, et al. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. J Biotechnol. 2006;123(1):106–116.
  • Kim BJ, Oh DJ, Chang HN. Limited use of centritech lab II centrifuge in perfusion culture of rCHO cells for the production of recombinant antibody. Biotechnol Prog. 2008;24(1):166–174.
  • Yang Z, Wang S, Halim A, et al. Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol. 2015;33(8):842–844.
  • Lee JC, Kim DY, Oh DJ, et al. Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: effect of temperature, pH, and dissolved oxygen. Biotechnol Bioproc E. 2008;13(4):401–409.
  • Kim JC, Kwon HS, Oh DJ. Production of recombinant human growth hormone by rCHO cells in a depth filter perfusion system. Biotechnol Bioproc E. 2014;19(6):1097–1104.
  • Fassnacht D, Reimann I, Pörtner R. et al. Scale-up of fixed-bed reactors for the cultivation of animal cells. In: Bernard A, Griffiths B, Noé W, editors. Animal cell technology: products from cells, cells as products. Dordrecht: Springer Netherlands; 2000. p. 311–313.
  • Pörtner R, Platas O, Fassnacht D, et al. Fixed bed reactors for the cultivation of mammalian cells: design, performance and scale-up. TOBIOTJ. 2007;1(1):41–46.
  • Zhang Y, Stobbe P, Silvander CO, et al. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor. J Biotechnol. 2015;213:28–41.
  • Goralczyk V, Driemel G, Bischof A, et al. A multiparallel bioreactor for the cultivation of mammalian cells in a 3D-ceramic matrix. Biotechnol Prog. 2010;26(2):556–564.
  • YekrangSafakar A, Hamel KM, Mehrnezhad A, et al. Development of rolled scaffold for high-density adherent cell culture. Biomed Microdevices. 2019;22(1):4.
  • Eibl R, Eibl D. Single-use technology in biopharmaceutical manufacture. New York (NY): John Wiley & Sons; 2019.
  • Voisard D, Meuwly F, Ruffieux PA, et al. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng. 2003;82(7):751–765.
  • Maeng JH, Jeong HE, Shin HJ, et al. Timescale analysis for estimating upper limit perfusion rate in a microfluidic perfusion cell culture platform. Microfluid Nanofluid. 2015;19(4):777–786.
  • Woodside SM, Bowen BD, Piret JM. Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology. 1998;28(1–3):163–175.
  • Kamthan S, Gomes J, Roychoudhury PK. Silk screen based dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells. Biotechnol Lett. 2014;36(8):1623–1630.
  • Vallez-Chetreanu F, Fraisse Ferreira LG, Rabe R, et al. An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures. J Biotechnol. 2007;130(3):265–273.
  • Hadpe SR, Sharma AK, Mohite VV, et al. ATF for cell culture harvest clarification: mechanistic modelling and comparison with TFF. J Chem Technol Biotechnol. 2017;92(4):732–740.
  • Pinto NDS, Napoli WN, Brower M. Impact of micro and macroporous TFF membranes on product sieving and chromatography loading for perfusion cell culture. Biotechnol Bioeng. 2020;117(1):117–124.
  • Williams T, Goodyear O, Davies L, et al. Lentiviral vector manufacturing process enhancement utilizing TFDF TM technology. Cell Gene Therapy Insights. 2020;6(3):455–467.
  • Bettinardi IW, Castan A, Medronho RA, et al. Hydrocyclones as cell retention device for CHO perfusion processes in single-use bioreactors. Biotechnol Bioeng. 2020;117(7):1915–1928.
  • Kim BJ, Chang HN, Oh DJ. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a centritech lab II centrifuge system. Biotechnol Prog. 2007;23(5):1186–1197.
  • Burgstaller D, Krepper W, Haas J, et al. Continuous cell flocculation for recombinant antibody harvesting. J Chem Technol Biotechnol. 2018;93(7):1881–1890.
  • Karst DJ, Steinebach F, Soos M, et al. Process performance and product quality in an integrated continuous antibody production process. Biotechnol Bioeng. 2017;114(2):298–307.
  • Feidl F, Vogg S, Wolf M, et al. Process-wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnol Bioeng. 2020;117(5):1367–1380.
  • Fisher AC, Kamga MH, Agarabi C, et al. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol. 2019;37(3):253–267.
  • Somasundaram B, Pleitt K, Shave E, et al. Progression of continuous downstream processing of monoclonal antibodies: current trends and challenges. Biotechnol Bioeng. 2018;115(12):2893–2907.
  • Walther J, McLarty J, Johnson T. The effects of alternating tangential flow (ATF) residence time, hydrodynamic stress, and filtration flux on high-density perfusion cell culture. Biotechnol Bioeng. 2019;116(2):320–332.
  • Villiger-Oberbek A, Yang Y, Zhou W, et al. Development and application of a high-throughput platform for perfusion-based cell culture processes. J Biotechnol. 2015;212:21–29.
  • Kim YJ, Paik SH, Han SK, et al. Quality by design characterization of the perfusion culture process for recombinant FVIII. Biologicals. 2019;59:37–46.
  • Abu-Absi SF, Yang L, Thompson P, et al. Defining process design space for monoclonal antibody cell culture. Biotechnol Bioeng. 2010;106(6):894–905.
  • Wolf MKF, Muller A, Souquet J, et al. Process design and development of a mammalian cell perfusion culture in shake-tube and benchtop bioreactors. Biotechnol Bioeng. 2019;116(8):1973–1985.
  • Bielser JM, Domaradzki J, Souquet J, et al. Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors. Biotechnol Prog. 2019;35(3):e2790.
  • Villiger TK, Steinhoff RF, Ivarsson M, et al. High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. J Biotechnol. 2016;229:3–12.
  • Mayrhofer P, Reinhart D, Castan A, et al. Rapid development of clone-specific, high-performing perfusion media from established feed supplements. Biotechnol Prog. 2020;36(2):e2933.
  • Mellahi K, Brochu D, Gilbert M, et al. Process intensification for the production of rituximab by an inducible CHO cell line. Bioprocess Biosyst Eng. 2019;42(5):711–725.
  • Zhang L, Wang M, Castan A, et al. Glycan residues balance analysis – GReBA: a novel model for the N-linked glycosylation of IgG produced by CHO cells. Metab Eng. 2020;57:118–128.
  • Henry O, Kwok E, Piret JM. Simpler noninstrumented batch and semicontinuous cultures provide mammalian cell kinetic data comparable to continuous and perfusion cultures. Biotechnol Prog. 2008;24(4):921–931.
  • Wolf MKF, Lorenz V, Karst DJ, et al. Development of a shake tube-based scale-down model for perfusion cultures. Biotechnol Bioeng. 2018;115(11):2703–2713.
  • Janoschek S, Schulze M, Zijlstra G, et al. A protocol to transfer a fed-batch platform process into semi-perfusion mode: the benefit of automated small-scale bioreactors compared to shake flasks as scale-down model. Biotechnol Prog. 2019;35(2):e2757.
  • Kreye S, Stahn R, Nawrath K, et al. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol Prog. 2019;35(5):e2832.
  • Gagliardi TM, Chelikani R, Yang Y, et al. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development. Biotechnol Prog. 2019;35(4):e2811.
  • Jin L, Wang ZS, Cao Y, et al. Establishment and optimization of a high-throughput mimic perfusion model in ambr® 15. Biotechnol Lett. 2021;43(2):423–433.
  • Zoro B, Tait A, Carpio M, et al. Development of a novel automated perfusion mini-bioreactor ambr® 250 perfusion. 2018.
  • Xu J, Xu X, Huang C, et al. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs. 2020;12(1):1770669.
  • Yang WC, Lu J, Kwiatkowski C, et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog. 2014;30(3):616–625.
  • Hiller GW, Ovalle AM, Gagnon MP, et al. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnol Bioeng. 2017;114(7):1438–1447.
  • Gagnon M, Nagre S, Wang W, et al. Shift to high-intensity, low-volume perfusion cell culture enabling a continuous, integrated bioprocess. Biotechnol Prog. 2018;34(6):1472–1481.
  • Kundu AM, Hiller GW. Hydrocyclones as cell retention devices for an N‐1 perfusion bioreactor linked to a continuous‐flow stirred tank production bioreactor. Biotechnol Bioeng. 2021;118(5):1973–1986.
  • Sartorius. Concentrated fed-batch perfusion 2021. Available from: https://www.sartorius.com/en/applications/biopharmaceutical-manufacturing/process-intensification/concentrated-fed-batch.
  • Särnlund S, Jiang Y, Chotteau V. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Biotechnol Bioeng. 2021;118(9):3533–3544.
  • Reinhart D, Damjanovic L, Kaisermayer C, et al. Benchmarking of commercially available CHO cell culture media for antibody production. Appl Microbiol Biotechnol. 2015;99(11):4645–4657.
  • Ahn WS, Jeon JJ, Jeong YR, et al. Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng. 2008;101(6):1234–1244.
  • Rodriguez J, Spearman M, Tharmalingam T, et al. High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. J Biotechnol. 2010;150(4):509–518.
  • Yoon SK, Ahn YH. Application of sodium propionate to the suspension culture of chinese hamster ovary cells for enhanced production of follicle-stimulating hormone. Biotechnol Bioprocess Eng. 2007;12(5):497–501.
  • Lin H, Leighty RW, Godfrey S, et al. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Biotechnol Prog. 2017;33(4):891–901.
  • Zheng C, Zhuang C, Chen YT, et al. Improved process robustness, product quality and biological efficacy of an anti-CD52 monoclonal antibody upon pH shift in Chinese hamster ovary cell perfusion culture. Process Biochem. 2018;65:123–129.
  • Kuiper M, Spencer C, Faldt E, et al. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Biotechnol Prog. 2019;35(4):e2821.
  • Bausch M, Schultheiss C, Sieck JB. Recommendations for comparison of productivity between fed-batch and perfusion processes. Biotechnol J. 2019;14(2):e1700721.
  • Wolf MKF, Pechlaner A, Lorenz V, et al. A two-step procedure for the design of perfusion bioreactors. Biochem Eng J. 2019;151:107295.
  • Becker M, Junghans L, Teleki A, et al. Perfusion cultures require optimum respiratory ATP supply to maximize cell-specific and volumetric productivities. Biotechnol Bioeng. 2019;116(5):951–960.
  • Takuma S, Hirashima C, Piret JM. Dependence on glucose limitation of the pCO2 influences on CHO cell growth, metabolism and IgG production. Biotechnol Bioeng. 2007;97(6):1479–1488.
  • Wingens M, Gatgens J, Schmidt A, et al. 2D-DIGE screening of high-productive CHO cells under glucose limitation-basic changes in the proteome equipment and hints for epigenetic effects. J Biotechnol. 2015;201:86–97.
  • Kim JS, Ahn BC, Lim BP, et al. High-level scu-PA production by butyrate-treated serum-free culture of recombinant CHO cell line. Biotechnol Prog. 2004;20(6):1788–1796.
  • Oh HK, So MK, Yang J, et al. Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a. Biotechnol Prog. 2005;21(4):1154–1164.
  • Coronel J, Heinrich C, Klausing S, et al. Perfusion process combining low temperature and valeric acid for enhanced recombinant factor VIII production. Biotechnol Prog. 2020;36(1):e2915.
  • Kumar N, Gammell P, Clynes M. Proliferation control strategies to improve productivity and survival during CHO based production culture : a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology. 2007;53(1–3):33–46.
  • Liu C, Chu I, Hwang S. Pentanoic acid, a novel protein synthesis stimulant for Chinese hamster ovary (CHO) cells. J Biosci Bioeng. 2001;91(1):71–75.
  • Park JH, Noh SM, Woo JR, et al. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J. 2016;11(4):487–496.
  • Wolf MKF, Closet A, Bzowska M, et al. Improved performance in mammalian cell perfusion cultures by growth inhibition. Biotechnol J. 2019;14(2):e1700722.
  • Wang SB, Lee-Goldman A, Ravikrishnan J, et al. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures. Biotechnol Bioeng. 2018;115(4):921–931.
  • Du Z, Treiber D, McCarter JD, et al. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnol Bioeng. 2015;112(1):141–155.
  • Duarte TM, Carinhas N, Barreiro LC, et al. Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng. 2014;111(10):2095–2106.
  • Zacchi LF, Recinos DR, Otte E, et al. S-Trap eliminates cell culture media polymeric surfactants for effective proteomic analysis of mammalian cell bioreactor supernatants. J Proteome Res. 2020;19(5):2149–2158.
  • Gomez N, Lull J, Yang X, et al. Improving product quality and productivity of bispecific molecules through the application of continuous perfusion principles. Biotechnol Prog. 2020;36(4):e2973.
  • Templeton N, Xu S, Roush DJ, et al. 13C metabolic flux analysis identifies limitations to increasing specific productivity in fed-batch and perfusion. Metab Eng. 2017;44:126–133.
  • Xu S, Chen H. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol. 2016;231:149–159.
  • Zhuang C, Zheng C, Chen Y, et al. Different fermentation processes produced variants of an anti-CD52 monoclonal antibody that have divergent in vitro and in vivo characteristics. Appl Microbiol Biotechnol. 2017;101(15):5997–6006.
  • Yang WC, Minkler DF, Kshirsagar R, et al. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. J Biotechnol. 2016;217:1–11.
  • Karst DJ, Scibona E, Serra E, et al. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnol Bioeng. 2017;114(9):1978–1990.
  • Shirahata H, Diab S, Sugiyama H, et al. Dynamic modelling, simulation and economic evaluation of two CHO cell-based production modes towards developing biopharmaceutical manufacturing processes. Chem Eng Res Des. 2019;150:218–233.
  • Klutz S, Holtmann L, Lobedann M, et al. Cost evaluation of antibody production processes in different operation modes. Chem Eng Sci. 2016;141:63–74.
  • Bunnak P, Allmendinger R, Ramasamy SV, et al. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs. Biotechnol Prog. 2016;32(5):1324–1335.
  • Stanton D. Compact manufacturing: Next-Gen media could save $30k per run, Amgen: Bioprocess International; 2018. [updated 2021; cited 2021 March 17th, 2021]. Available from: https://bioprocessintl.com/bioprocess-insider/upstream-downstream-processing/compact-manufacturing-next-gen-media-could-save-30k-per-run-amgen/.
  • Zhu MM, Mollet M, Hubert RS, et al. Industrial production of therapeutic proteins: cell lines, cell culture, and purification. In: Kent JA, Bommaraju TV, Barnicki SD, editors. Handbook of industrial chemistry and biotechnology. Cham: Springer International Publishing; 2017. p. 1639–1669.
  • Puck TT, Cieciura SJ, Robinson A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958;108(6):945–956.
  • Lewis NE, Liu X, Li Y, et al. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the cricetulus griseus draft genome. Nat Biotechnol. 2013;31(8):759–765.
  • Reinhart D, Damjanovic L, Kaisermayer C, et al. Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnol J. 2019;14(3):e1700686.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–1398.
  • Xu X, Nagarajan H, Lewis NE, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol. 2011;29(8):735–741.
  • Hefzi H, Ang KS, Hanscho M, et al. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst. 2016;3(5):434–443 e8.
  • Yongky A, Xu J, Tian J, et al. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. MAbs. 2019;11(8):1502–1514.
  • Ballez JS, Mols J, Burteau C, et al. Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-gamma production in suspension and inside microcarriers in protein-free media. Cytotechnology. 2004;44(3):103–114.
  • Gomez N, Barkhordarian H, Lull J, et al. Perfusion CHO cell culture applied to lower aggregation and increase volumetric productivity for a bispecific recombinant protein. J Biotechnol. 2019;304:70–77.
  • Noor E, Cherkaoui S, Sauer U. Biological insights through omics data integration. Curr Opin Syst Biol. 2019;15:39–47.
  • Stolfa G, Smonskey MT, Boniface R, et al. CHO-omics review: the impact of current and emerging technologies on Chinese hamster ovary based bioproduction. Biotechnol J. 2018;13(3):e1700227.
  • Bertrand V, Karst DJ, Bachmann A, et al. Transcriptome and proteome analysis of steady-state in a perfusion CHO cell culture process. Biotechnol Bioeng. 2019;116(8):1959–1972.
  • Karst DJ, Steinhoff RF, Kopp MRG, et al. Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture. Biotechnol Prog. 2017;33(4):879–890.
  • Kuo CC, Chiang AW, Shamie I, et al. The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol. 2018;51:64–69.
  • Kildegaard HF, Baycin-Hizal D, Lewis NE, et al. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol. 2013;24(6):1102–1107.
  • Calmels C, McCann A, Malphettes L, et al. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Metab Eng. 2019;51:9–19.
  • Yusufi FNK, Lakshmanan M, Ho YS, et al. Mammalian systems biotechnology reveals global cellular adaptations in a recombinant CHO cell line. Cell Syst. 2017;4(5):530–542 e6.
  • Fernandez-de-Cossio-Diaz J, Leon K, Mulet R. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures. PLoS Comput Biol. 2017;13(11):e1005835.
  • Lee JS, Grav LM, Lewis NE, et al. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J. 2015;10(7):979–994.
  • Gupta SK, Srivastava SK, Sharma A, et al. Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS One. 2017;12(8):e0181455.
  • Henry MN, MacDonald MA, Orellana CA, et al. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng. 2020;117(4):1187–1203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.