1,827
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts

, , , , , , , , , , & ORCID Icon show all
Pages 1284-1303 | Received 13 Jul 2021, Accepted 09 Oct 2021, Published online: 02 Dec 2021

References

  • Arevalo-Gallegos A, Ahmad Z, Asgher M, et al. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol. 2017;99:308–318.
  • Rajeev R, Shady SH, Gwilym AW, et al. A review on bioconversion of Agro-Industrial wastes to industrially important enzymes. Bioeng. 2018;5(4):93.
  • Li Y, Wang L-e, Liu G, et al. Rural household food waste characteristics and driving factors in China. Resour Conserv Recycl. 2021;164:105209.
  • Arshadi M, Attard TM, Lukasik RM, et al. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the Agri-food chain. Green Chem. 2016;18(23):6160–6204.
  • Satari B, Karimi K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl. 2018;129:153–167.
  • Paggiola G, Stempvoort SV, Bustamante J, et al. Can bio-based chemicals meet demand? Global and regional case-study around citrus waste-derived limonene as a solvent for cleaning applications. Biofuels, Bioprod Bioref. 2016;10(6):686–698.
  • Negro V, Ruggeri B, Fino D, et al. Life cycle assessment of orange peel waste management. Resour Conserv Recycl. 2017;127:148–158.
  • Aboagye D, Banadda N, Kiggundu N, et al. Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis. Renew. Sustain Energy Rev. 2017;70:814–821.
  • Zaza A. Performance of awassi lambs fed citrus pulp and olive cake silage. In: Faculty of graduate studies at an Najah National University. Nablus, Palestine: An-Najah National University; 2008. 9:1–18.
  • Manjarres-Pinzon K, Cortes-Rodriguez M, Rodríguez-Sandoval E. Effect of drying conditions on the physical properties of impregnated orange peel. Braz J Chem Eng. 2013;30(3):667–676.
  • Alnaimy A. Using of citrus by-products in farm animals feeding. OAJS. 2017;1(3):1–5.
  • Yoo J-H, Lee H-B, Choi S-W, et al. Production of an antimicrobial compound by Bacillus subtilis LS 1–2 using a citrus-processing byproduct. Korean J Chem Eng. 2011;28(6):1400–1405.
  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci. 2013;6(2):426–464.
  • Mowlds S. The EU’s farm to fork strategy: missing links for transformation. Acta Innov. 2020;36:17–32.
  • Timmerman F. From farm to fork: our food, our health, our plan. European commission. 2020. https://ec.europa.eu/commission/presscorner/detail/en/fs_20_908.
  • Li P, Li T, Zeng Y, et al. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohydr Polym. 2016;151:684–691.
  • Silva MF, Fornari RCG, Mazutti MA, et al. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng. 2009; 90(1):119–123.
  • Wang Z, Wu J, Zhu L, et al. Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresour Technol. 2016;211:390–397.
  • Mohsin A, Sun J, Khan IM, et al. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: a systematically modeled approach. Carbohydr Polym. 2019; 205:626–635.
  • Mohsin A, Zhang K, Hu J, et al. Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: a kinetic model approach. Carbohydr Polym. 2018;181:793–800.
  • Marin FR, Soler-Rivas C, Benavente-Garcia O, et al. By-products from different citrus processes as a source of customized functional fibres. Food Chem. 2007;100(2):736–741.
  • Prakash Maran J, Sivakumar V, Thirugnanasambandham K, et al. Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym. 2013;97(2):703–709.
  • Widmer W, Zhou W, Grohmann K. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour Technol. 2010;101(14):5242–5249.
  • Wilkins MR. Effect of orange peel oil on ethanol production by Zymomonas mobilis. Biomass Bioenergy. 2009;33(3):538–541.
  • Wilkins MR, Widmer WW, Grohmann K. Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 2007;42(12):1614–1619.
  • Rafiq S, Kaul R, Sofi SA, et al. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2018;17(4):351–358.
  • FAO. Fruit and vegetables- your dietary essentials. Rome, 2020. ISBN 978-92-5-133709-7. http://www.fao.org/3/cb2395en/CB2395EN.pdf
  • Shahbandeh M. Orange production worldwide from 2012. Statista. 2021. https://www.statista.com/statistics/577398/world-orange-production
  • Mahato N, Sharma K, Sinha M, et al. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J Funct Foods. 2018;40:307–316.
  • Sharma K, Mahato N, Lee YR. Lee yong R. Extraction, characterization and biological activity of citrus flavonoids. Rev Chem Eng. 2019;35(2):265–284.
  • Zema DA, Calabrò PS, Folino A, et al. Valorisation of citrus processing waste: a review. Waste Manag. 2018;80:252–273.
  • Marcos FN, Vinicious GT, Vitor NM, et al. Global orange juice market: a 16-year summary and opportunities for creating value. Trop Plant Pathol. 2020;45:166–174.
  • Ladaniya MS. Citrus Fruit - Biology, technology and evaluation. 1st edn. USA: Academic Press; 2008.
  • FAO. Food wastage footprint, Impacts on natural resources; 2013 (63 pp). https://www.fao.org/3/i3347e/i3347e.pdf
  • Ayala JR, Montero G, Coronado MA, et al. Characterization of orange peel waste and valorization to obtain reducing sugars. Molecules. 2021;26(5):1348.
  • Anagnostopoulou MA, Kefalas P, Papageorgiou VP, et al. Radical scavenging activity of various extracts and fractions of sweet orange peel (citrus sinensis. ). Food Chem. 2006;94(1):19–25.
  • Proteggente AR, Saija A, De Pasquale A, et al. The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (citrus sinensis L. Osbeck) varieties. Free Radic Res. 2003;37(6):681–687.
  • Gorinstein S, Cvikrová M, Machackova I, et al. Characterization of antioxidant compounds in jaffa sweeties and white grapefruits. Food Chem. 2004;84(4):503–510.
  • Moufida S, Marzouk B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry. 2003;62(8):1283–1289.
  • Tittarelli F, Trinchera A, Intrigliolo F, et al. Evaluation of organic matter stability during the composting process of agroindustrial wastes. Microbiol Compost. 2002;12:397–406.
  • De Medina-Salas L, GIraldi-Diaz MF, Gonzalez EC, et al. Valorization of orange peel waste using precomposting and vermicomposting processes. Sustainability. 2020;12(18):7626.
  • Boldrin A, Neidel TL, Damgaard A, et al. Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag. 2011;31(4):619–630.
  • Ashbell G, Weinberg ZG. Orange peels: the effect of blanching and calcium hydroxide addition on ensiling losses. Biol Wastes. 1988;23(1):73–77.
  • Ítavo LCV, Santos GTd, Jobim CC, et al. Aditivos na conservação do bagaço de laranja in natura na forma de silagem. R Bras Zootec. 2000;29(5):1474–1484.
  • Aggarwal KK, Khanuja SPS, Ahmad A, et al. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of mentha spicata and anethum sowa. Flavour Fragr J. 2002;17(1):59–63.
  • Bernal-Vicente A, Ros M, Tittarelli F, et al. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effectsBioresour Technol. 2008;99(18):8722–8728.
  • Bampidis VA, Robinson PH. Citrus by-products as ruminant feeds: a review. Anim Feed Sci Tech. 2006;128(3-4):175–217.
  • R, Callaway T, Carroll J, D, Arthington J, et al. Orange peel products can reduce Salmonella populations in ruminants. Foodborne Pathogens and Disease. 2011;8(10):1071–1075.
  • Callaway R, Carroll T, Arthington J, et al. I > Escherichia coli O157:H7 populations in ruminants can be reduced by orange peel product feeding. 2011;74:1917–1921.
  • Pourhossein Z, Qotbi A, Seidavi A, et al. Effect of different levels of dietary sweet orange (citrus sinensis) peel extract on humoral immune system responses in broiler chickens. 2014;86(1):105–110.
  • Sharma K, Mahato N, Cho MH, et al. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition. 2017;34:29–46.
  • Hosseini SS, Khodaiyan F, Yarmand MS. Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. Int J Biol Macromol. 2016;82:920–926.
  • Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. J Chem Eng. 2009;146(2):211–219.
  • Kute A, Mohapatra D, Kotwaliwale N, et al. Characterization of pectin extracted from orange peel powder using Microwave-Assisted and acid extraction methods. Agric Res. 2019;9:241–248.
  • Guo X, Han D, Xi H, et al. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: a comparison. Carbohydr Polym. 2012;88(2):441–448.
  • Sayah M, Chabir R, El Madani N, et al. Comparative study on pectin yield according to the state of the orange peels and acids used. IJIRSET. 2014;03(08):15658–15665.
  • Fakayode OA, Abobi KE. Optimization of oil and pectin extraction from orange (citrus sinensis) peels: a response surface approach. Anal Sci Technol. 2018;9(1):20.
  • Hosseini SS, Khodaiyan F, Yarmand MS. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym. 2016;140:59–65.
  • Hosseini SS, Khodaiyan F, Kazemi M, et al. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol. 2018;125:621–629.
  • Singanusong R, Nipornram S, Tochampa W, et al. Low power Ultrasound-Assisted extraction of phenolic compounds from mandarin (citrus reticulata blanco cv. Sainampueng) and lime (citrus aurantifolia) Peels and the antioxidant. Food Anal Methods. 2015;8(5):1112–1123.
  • Khan MK, Abert-Vian M, Fabiano-Tixier A-S, et al. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (citrus sinensis L.) peel. Food Chem. 2010;119(2):851–858.
  • Boukroufa M, Boutekedjiret C, Chemat F. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour Technol. 2017;3(3):252–262.
  • Al-Idee T, Habbal H, Karabet F. Determination of the Optimum Extraction Conditions of Carotenoid Pigment from Orange Peel by Response Surface Methodology. 2020.
  • Murador DC, Braga ARC, Martins PLG, et al. Ionic liquid associated with ultrasonic-assisted extraction: a new approach to obtain carotenoids from orange peel. Food Res Int. 2019;126:108653.
  • Bustamante J, van Stempvoort S, García-Gallarreta M, et al. Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. J Clean Prod. 2016;137:598–605.
  • Golmohammadi M, Borghei A, Zenouzi A, et al. Optimization of essential oil extraction from orange peels using steam explosion. Heliyon. 2018;4(11):e00893.
  • Farahmandfar R, Tirgarian B, Dehghan B, et al. Changes in chemical composition and biological activity of essential oil from thomson navel orange (citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Sci Nutr. 2020;8(1):124–138.
  • Abbas D, Lutfun N, Sanaz H. Microwave-assisted extraction in natural products isolation. Methods Mol Biol. 2012;864:89–115.
  • Tham MW, Liew KC. Influence of different extraction temperatures and methanol solvent percentages on the total phenols and total flavonoids from the heartwood and bark of acacia auriculiformis. Eur J Wood Prod. 2014;72(1):67–72.
  • Chen X-M, Tait AR, Kitts DD. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017; 218:15–21.
  • Rafiq S, Kaul R, Sofi SA, et al. Citrus peel as a source of functional ingredient: a review. J Saudi Soc Agric Sci. 2016;17:351–358.
  • Asikin Y, Maeda G, Tamaki H, et al. Cultivation line and fruit ripening discriminations of shiikuwasha (citrus depressa hayata) peel oils using aroma compositional, electronic nose, and antioxidant analyses. Int Food Res J. 2015;67:102–110.
  • Spigno G, Tramelli L, Dante Marco DF. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng. 2007;81(1):200–208.
  • Xu M, Ran L, Chen N, et al. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019;297:124970.
  • Lachos-Perez D, Baseggio AM, Mayanga-Torres PC, et al. Subcritical water extraction of flavanones from defatted orange peel. J Supercrit Fluids. 2018;138:7–16.
  • Yaqin MA, Xingqian Y, Yunbin H, et al. Ultrasound-assisted extraction of hesperidin from penggan (citrus reticulata) peel. Ultrason Sonochem. 2008;15(3):227–232.
  • Smith MV. Regulation of artificial and natural flavors. Cereal Food World. 1981;26(6):278–280.
  • Rincon AM, Vasquez AM, Padilla FC. Chemical composition and bioactive compounds of flour of orange (citrus sinensis), tangerine (citrus reticulata) and grapefruit (citrus paradisi) peels cultivated in Venezuela. Arch Latinoam Nutr. 2005;55(3):305–310.
  • Mata-Gómez LC, Montañez JC, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell Factories. 2014;13(1):12.
  • Tapiero H, Townsend DM, Tew KD. The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother. 2004;58(2):100–110.
  • Roberts EH. An introduction to world crops 3rd ed. Agric Syst. 1982;9(4):325–328.
  • El-Nawawi SA, Shehata FR. Extraction of pectin from egyptian orange peel. Factors affecting the extraction. Biol Wastes. 1987;20(4):281–290.
  • Elsharnouby G. Conversion of processed citrus wastes into nutritional components. Int J Food Process Technol. 2013;4:8.
  • Savic Gajic IM, Savic IM, Gajic DG, et al. Ultrasound-Assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in Ca-Alginate beads. Biomolecules. 2021;11(2):225.
  • Lota M-L, de Rocca Serra D, Tomi F, et al. Chemical variability of peel and leaf essential oils of mandarins from citrus reticulata blanco. Biochem Syst Ecol. 2000;28(1):61–78.
  • Ibrahim M, Kainulainen P, Aflatuni A. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. AFSci. 2001;10(3):243–259.
  • Lohrasbi M, Pourbafrani M, Niklasson C, et al. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour Technol. 2010;101(19):7382–7388.
  • Ciriminna R, Lomeli-Rodriguez M, Demma Carà P, et al. Limonene: a versatile chemical of the bioeconomy. Chem Commun (Camb)). 2014;50(97):15288–15296.
  • Ruiz B, Flotats X. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. 2014a;34(11):2063–2079.
  • Martín MA, Siles JA, Chica AF, et al. Biomethanization of orange peel waste. Bioresour Technol. 2010;101(23):8993–8999.
  • Battista F, Remelli G, Zanzoni S, et al. Valorization of residual orange peels: Limonene recovery, volatile fatty acids, and biogas production. ACS Sustainable Chem Eng. 2020;8(17):6834–6843.
  • Panesar P, Marwaha S, Kennedy J. Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol. (4)2006;81:623–635.
  • Wilkins MR, Widmer WW, Camero RG, et al. Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste. Proc Fla State Hort Soc. 2005;118:419–422.
  • Koutinas M, Patsalou M, Stavrinou S, et al. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant pichia kudriavzevii KVMP10. Lett Appl Microbiol. 2016;62(1):75–83.
  • Joshi SM, Waghmare JS, Sonawane KD, et al. Bio-ethanol and bio-butanol production from orange peel waste. Biofuels. 2015;6(1-2):55–61.
  • Ricci A, Diaz AB, Caro I, et al. Orange peels: from by-product to resource through lactic acid fermentation. J Sci Food Agric. (15)2019;99:6761–6767.
  • Xiang-Yang G, Xu Y, Chen X, et al. Improvement of l-lactic acid production from orange peels in mixed culture system. J Global Biosci. 2014;3:354–360.
  • de la Torre I, Ladero M, Santos VE. Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydrolysates and model monosaccharide solutions: effects of pH and temperature on process kinetics. Biomass Conv Bioref. 2019;9(3):565–575.
  • Rivas B, Torrado A, Torre P, et al. Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem. 2008;56(7):2380–2387.
  • Aravantinos-Zafiris G, Tzia C, Oreopoulou V, et al. Fermentation of orange processing wastes for citric acid production. J Sci Food Agric. 1994;65(1):117–120.
  • Hamdy HS. Citric acid production by Aspergillus niger grown on orange peel medium fortified with cane molasses. Ann Microbiol. 2013;63(1):267–278.
  • Li Q, Siles JA, Thompson IP. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl Microbiol Biotechnol. 2010;88(3):671–678.
  • Ruiz-Mercado GJ, Gonzalez MA, Smith RL. Development of a citrus peel-based biorefinery strategy for the production of succinic acid. J Clean Prod. 2017;166:706–716.
  • Wikandari R, Millati R, Cahyanto MN, et al. Biogas production from citrus waste by membrane bioreactor. Membranes (Basel)). 2014;4(3):596–607.
  • Rokaya B, Kerroum D, Hayat Z, et al. Biogas production by an anaerobic digestion process from orange peel waste and its improvement by limonene leaching: Investigation of H2O2 pre-treatment effect. Energy Sources Part A. 2019:1–9. DOI:10.1080/15567036.2019.1692975
  • Wikandari R, Nguyen H, Millati R, et al. Improvement of biogas production from orange peel waste by leaching of limonene. Biomed Res Int. 2015;2015:494182.
  • Ballesteros I, Negro MJ, Oliva JM, et al. Ethanol production from steam-explosion pretreated wheat straw. ABAB. 2006;130(1-3):496–508.
  • Yat SC, Berger A, Shonnard DR. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol. 2008;99(9):3855–3863.
  • Bilal M, Asgher M, Iqbal HM, et al. Biotransformation of lignocellulosic materials into value-added products-A review. Int J Biol Macromol. 2017;98:447–458.
  • Hari Krishna S, Chowdary GV. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. J Agric Food Chem. 2000;48(5):1971–1976.
  • Wysocka J, Doskocz J, Haller P. The use of alcohols and their compounds as biofuel and gasoline blends. J Environ Eng. 2015;5:1–5.
  • Griffin WM, Saville BA, MacLean HL. Ethanol use in the United States: status, threats and the potential future. USA: Academic Press; 2016. p. 34–62.
  • Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Bioresour Technol. 2005;96(18):2019–2025.
  • Jha P, Singh S, Madathil R. Valorisation of orange peel: supplement in fermentation media for ethanol production and source of limonene. J Environ Sustain. 2019;2:6–17.
  • Cao L, Tang X, Zhang X, et al. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab Eng. 2014;24:150–159.
  • Durre P. Biobutanol: an attractive biofuel. Biotechnol J. 2007;2(12):1525–1534.
  • Pourbafrani M, Forgács G, Horváth IS, et al. Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol. 2010;101(11):4246–4250.
  • Mizuki E, Akao T, Saruwatari T. Inhibitory effect of citrus unshu peel on anaerobic digestion. Biol Wastes. 1990;33(3):161–168.
  • Calabrò PS, Paone E, Komilis D. Strategies for the sustainable management of orange peel waste through anaerobic digestion. J Environ Manage. 2018;212:462–468.
  • Nguyen HTD. Biogas production from solvent pretreated orange peel. 2012.
  • Palmowski LM, Müller JA. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci Technol. 2000;41(3):155–162.
  • Ylitervo P. Production of ethanol and biomass from orange peel waste by Mucor indicus, in Magisteruppsats. 2009.
  • Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng. 2015;119(1):10–18.
  • Komesu A, Oliveira JARd, Martins LHdS, et al. Lactic acid production to purification: a review. BioRes. 2017;12(2):4364–4383.
  • Abu Yazid N, Barrena R, Komilis D, et al. Solid-State fermentation as a novel paradigm for organic waste valorization: a review. Sustainability. (2)2017;9:224.
  • Nunes LV, de Barros Correa FF, de Oliva Neto P, et al. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture. World J Microbiol Biotechnol. 2017;33(4):79.
  • Negro V, Mancini G, Ruggeri B, et al. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresour Technol. 2016;214:806–815.
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol. (4)2011;156:286–301.
  • Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv. (6)2013;31:877–902.
  • John RP, Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol. (3)2007;74:524–534.
  • Rodrigues C, de Souza Vandenberghe LP, Teodoro J, et al. Improvement on citric acid production in solid-state fermentation by Aspergillus niger LPB BC mutant using citric pulp. Appl Biochem Biotechnol. 2009;158(1):72–87.
  • Vidya P. Optimization and utilisation of various fruit peel as substrate for citric acid production by Aspergillus niger isolated from orange and carrot. J Pharm Innov. 2019;7:141–146.
  • Vandenberghe LPS, Soccol CR, Pandey A, et al. Microbial production of citric acid. Braz Arch Biol Technol. (3)1999;42:263–276.
  • Khosravi-Darani K, Zoghi A. Comparison of pretreatment strategies of sugarcane baggase: experimental design for citric acid production. Bioresour Technol. 2008;99(15):6986–6993.
  • Yáñez R, Alonso J, Parajó J. Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochem. (11)2004;39:1543–1551.
  • Grohmann K, Cameron RG, Buslig BS. Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour Technol. 1995;54(2):129–141.
  • Max B, Salgado J, Rodríguez N, et al. Biotechnological production of citric acid. Braz J Microbiol. (4)2010;41:862–875.
  • Isar J, Agarwal L, Saran S, et al. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresour Technol. 2006;97(13):1443–1448.
  • McKinlay J, Vieille C, Zeikus J. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol. (4)2007;76:727–740.
  • Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol. 2006;39(3):352–361.
  • Zheng P, Dong JJ, Sun ZH, et al. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol. 2009;100(8):2425–2429.
  • Singhania R, Sukumaran R, Mathew R, et al. Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem. 2011;46(7):1521–1524.
  • Fagbohungbe M, Herbert B, Hurst L, et al. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour Technol. 2016;216:142–149.
  • Meynial-Salles I, Dorotyn S, Soucaille P. A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng. 2008;99(1):129–135.
  • Gunnarsson I, Kuglarz M, Karakashev D, et al. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (cannabis sativa L.). Bioresour Technol. 2015;182:58–66.
  • Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, et al. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Conv Bioref. 2021;11(2):645–659.
  • Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 2015;6:496–496.
  • Suresh Kumar A, Mody K, Jha B. Bacterial exopolysaccharides-a perception. J Basic Microbiol. 2007;47(2):103–117.
  • Wu S, Lu M, Fang Y, et al. Production of curdlan grown on cassava starch waste hydrolysates. J Polym Environ. 2018;26(1):33–38.
  • Mohsin A, Ni H, Luo Y, et al. Qualitative improvement of camel milk date yoghurt by addition of biosynthesized xanthan from orange waste. LWT-Food Sci Technol. 2019;108:61–68.
  • Hingsamer M, Jungmeier G. The role of bioenergy in the emerging bioeconomy. Biorefineries. In: Lago C, Caldes N, Lechon Y, editors. USA: Academic Press, Elsevier; 2018. p. 180–221.
  • Cormann M. The bioeconomy of 2030, in the bioeconomy to 2030: designing a policy agenda. Paris: OECD publishing; 2009.
  • Manzanares P. The role of biorefinering research in the development of a modern bioeconomy. Acta Innov. 2020;37:47–56.
  • Lieder M, Rashid A. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J Clean Prod. 2016;115:36–51.
  • Patsalou M, Samanides CG, Protopapa E, et al. A citrus peel waste biorefinery for ethanol and methane production. Molecules. 2019;24(13):2451.
  • Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, et al. Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev. 2019;107:587–601.
  • Forgács G, Pourbafrani M, Niklasson C, et al. Methane production from citrus wastes: process development and cost estimation. J Chem Technol Biotechnol. 2012;87(2):250–255.
  • Ruiz-Mercado GJ, Gonzalez MA, Smith RL. Sustainability indicators for chemical processes: III. Biodiesel case study. Ind Eng Chem Res. 2013;52(20):6747–6760.
  • Shiby VK, Mishra HN. Fermented milks and milk products as functional foods-a review. Crit Rev Food Sci Nutr. 2013;53(5):482–496.
  • Illupapalayam VV, Smith SC, Gamlath S. Consumer acceptability and antioxidant potential of probiotic-yogurt with spices. Food Sci Technol. 2014;55(1):255–262.
  • Bhandalkar S, Deshmukh R. Flavored Yogurt Market by Flavor (Strawberry, Vanilla, Peach, Blueberry, and Others), Distribution Channel (Supermarket/Hypermarket, Convenience stores, E commerce, and Others), and Type (Organic and Conventional): Global Opportunity Analysis and Industry Forecast. Allied Market Research. 2019–2026. https://www.alliedmarketresearch.com/flavored-yogurt-market.
  • Sendra E, Fayos P, Lario Y, et al. Incorporation of citrus fibers in fermented milk containing probiotic bacteria. Food Microbiol. 2008;25(1):13–21.
  • Silva P, Fries L, Menezes C, et al. Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Cienc Rural. 2014;44(7):1304–1311.
  • Lenti D. Fermented drinks market - growth, trends, covid-19 impact, and forecasts. Mordor Intelligence. 2021-2026. https://www.mordorintelligence.com/industry-reports/fermented-drinks-market.
  • Coda R, Lanera A, Trani A, et al. Yogurt-like beverages made of a mixture of cereals, soy and grape must: microbiology, texture, nutritional and sensory properties. Int J Food Microbiol. 2012;155(3):120–127.
  • Gupta S, Cox S, Abu-Ghannam N. Process optimization for the development of a functional beverage based on lactic acid fermentation of oats. Biochem Eng J. 2010;52(2-3):199–204.
  • Huang J-Y, Huang M-L, Kao C-Y, et al. Orange peel fiber and tremella flava chen fermented powder effectively induce exopolysaccharide production by Lactobacillus plantarum SLC 13. IJAB. 2017;19(03):437–444.
  • Kimoto-Nira H, Ohashi Y, Amamiya M, et al. Fermentation of onion (allium cepa L.) peel by lactic acid bacteria for production of functional food. Food Measure. 2020;14(1):142–149.
  • Al-Hindi RR, Abd El Ghani S. Production of functional fermented milk beverages supplemented with pomegranate peel extract and probiotic lactic acid bacteria. J Food Qual. 2020;2020:1–9.
  • Samarth RM, Panwar M, Kumar M, et al. Evaluation of antioxidant and radical-scavenging activity of certain radioprotective plant extracts. Food Chem. 2008;106(2):868–873.
  • Sudha ML, Vetrimani R, Leelavathi K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough on biscuit quality. Food Chem. 2007;100(4):1365–1370.
  • Liu Y, Shi J, Langrish T. Water-based extraction of pectin from flavedo and albedo of orange peels. J Chem Eng. (3)2006;120:203–209.
  • Sulieman AM. Physicochemical properties of wheat bread supplemented with orange peel by-Products. Int J Nutr Food Sci. 2013;2:1–4.
  • Ajila CM, Leelavathi K, Prasada Rao UJS. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J Cereal Sci. 2008;48(2):319–326.
  • Alongi M, Melchior S, Anese M. Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT Food Sci Technol. 2019;100:300–305.
  • Hernawati A, Aryani A, Shintawati R. Physical characteristics, chemical composition, organoleptic test and the number of microbes in the biscuits with addition of flour banana peels. J Phys Conf Ser. 2017;812:012118.
  • Hernández-Santos B, Vivar-Vera M. D L Á, Rodríguez-Miranda J, et al. Dietary fibre and antioxidant compounds in passion fruit (passiflora edulis f. flavicarpa) peel and depectinised peel waste. Int J Food Sci Technol. 2015;50(1):268–274.
  • Brennan MA, Monro JA, Brennan CS. Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. Int J Food Sci Technol. 2008;43(12):2278–2288.
  • Grasso S. Extruded snacks from industrial by-products: a review. Trends Food Sci Technol. 2020;99:284–294.
  • Hoover R, Hughes T, Chung HJ, et al. Composition, molecular structure, properties, and modification of pulse starches: a review. Int Food Res J. 2010;43(2):399–413.
  • Ding QB, Ainsworth P, Plunkett A, et al. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J Food Eng. 2006;73(2):142–148.
  • Camire ME, Flint SI. Thermal processing effects on dietary fiber composition and hydration capacity in corn meal, oat meal, and potato peels. Cereal Chem. 1991; 68(6):645–647.
  • Norfezah MN, Hardacre A, Brennan CS. Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci Technol Int. 2011;17(4):367–373.
  • Du B, Jiao Y, Li Y, et al. Study on modification of the banana peel in the extrusion. AMR. 2011;236-238:2172–2178.
  • Karthika Devi B, Kuriakose SP, Krishnan AVC, et al. Utilization of by-product from tomato processing industry for the development of new product. J Food Process. 2016;7:8.
  • Shahbandeh M. Global meat industry value, 2018 & 2023. Statista. 2019. https://www.statista.com/statistics/502286/global-meat-and-seafood-market.
  • Fernández J, Pérez-Álvarez JA, Fernández-López JA. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997;59(3):345–353.
  • García ML, Dominguez R, Galvez MD, et al. Utilization of cereal and fruit fibres in low fat dry fermented sausages. Meat Sci. 2002;60(3):227–236.
  • Viuda-Martos M, Fernández-Lopez J, Sayas-Barbera E, et al. Citrus Co-Products as technological strategy to reduce residual nitrite content in meat products. J Food Sci. 2009;74(8):R93–R100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.