632
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Multifaceted production strategies and applications of glucosamine: a comprehensive review

, , , , , ORCID Icon & ORCID Icon show all
Pages 100-120 | Received 25 Jun 2021, Accepted 10 Oct 2021, Published online: 19 Dec 2021

References

  • Global glucosamine market 2021-2027 demands and insights analysis reports by types. Market Watch https://www.marketwatch.com/.
  • Glucosamine market size is estimated to grow with a CAGR of 1.5% during 2021-2026 with top countries data. Global glucosamine market https://www.wboc.com/story/43990705/glucosamine-market-in-2021.
  • Pangestuti R, Kim S-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods. 2011;3(4):255–266.
  • Grzanna MW, Au RY, Au AY, et al. Avocado/soybean unsaponifiables, glucosamine and chondroitin sulfate combination inhibits proinflammatory COX-2 expression and prostaglandin E2 production in tendon-derived cells. J Med Food. 2020;23(2):139–146.
  • Liu X, Ma PS. Recent development of glucosamine-6-phosphate derivatives as potential antibacterial agents. Chem Eur. 2020;5(5):1718–1727.
  • Shen KT, Chen MH, Chan HY, et al. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol. 2009;47(8):1864–1871.
  • Zhang H, Lu Y, Wang Y, et al. D-Glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst. RSC Adv. 2018;8(10):5608–5613.
  • Shintani T, Yamazaki F, Katoh T, et al. Glucosamine induces autophagy via an m-TOR independent pathway. Biochem Biophys Res Commun. 2010;391(4):1775–1779.
  • Yadav M, Goswami P, Paritosh K, et al. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess. 2019;6:8.
  • Liu H, Li N, Liu X, et al. Poly(N-acryloyl-glucosamine-co-methylenebisacrylamide)-based hydrophilic magnetic nanoparticles for the extraction of aminoglycosides in meat samples. J Chromatogr A. 2020;1609:460517.
  • Dhungel P, Bhattacherjee A, Hrynets Y, et al. The effect of amino acids on non-enzymatic browning of glucosamine: Generation of butterscotch aromatic and bioactive health compounds without detectable levels of neo-formed alkylimidazoles. Food Chem. 2020;308:125612.
  • Chen W, Wang C, Gao Y, et al. Incorporating chitin derived glucosamine sulfate into nanofibers via coaxial electrospinning for cartilage regeneration. Carbohydr Polym. 2020;229:115544.
  • Ashkani-Esfahani S. Glucosamine enhances tissue regeneration in the process of wound healing in rats as animal model; a stereological study. J Cytol Histol. 2012;03(04):1000150.
  • Cerbo AD, Laurino C, Palmieri B, et al. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, neutrophil elastase 2, hyaluronic acid and carbonylated proteins. J Photochem Photobiol B. 2015;144:94–103.
  • Rajoka MSR, Mehwish HM, Wu Y, et al. Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Crit Rev Biotechnol. 2020;40(3):365–379.
  • Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–2349.
  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar Drugs. 2015;13(3):1133–1174.
  • Ma Q, Gao X. Categories and biomanufacturing methods of glucosamine. Appl Microbiol Biotechnol. 2019;103(19):7883–7889.
  • Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep. 2018;38:1–21.
  • Alvarez F. The effect of chitin size, shape, source and purification method on immune recognition. Molecules. 2014;19(4):4433–4451.
  • Zhu W, Wang D, Liu T, et al. Production of N-acetyl-D-glucosamine from mycelial waste by a combination of bacterial chitinases and an insect N-acetyl-D-glucosaminidase. J Agric Food Chem. 2016;64(35):6738–6744.
  • Sharif R, Mujtaba M, Ur Rahman M, et al. The multifunctional role of chitosan in horticultural crops; a review. Molecules. 2018;23(4):872.
  • Benavente M, Arias S, Moreno L, et al. Production of glucosamine hydrochloride from crustacean shell. J Pharm Pharmacol. 2015;3:20–26.
  • Wei G, Zhang A, Chen K, et al. Enzymatic production of N-acetyl-D-glucosamine from crayfish shell wastes pretreated via high pressure homogenization. Carbohydr Polym. 2017;171:236–241.
  • Majekodunmi SO, Olorunsola EO, Uzoaganobi CC. Comparative physicochemical characterization of chitosan from shells of two bivalved mollusks from two different continents. American J Polym Sci. 2017;7:15–22.
  • Arrouze F, Essahli M, Rhazi M, et al. Chitin and chitosan: study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in essaouira. J Mater Environ Sci. 2017;8:2251–2258.
  • Courtois D, Michaux S, Goulois E. Production of glucosamine from plant species. United States patent no. US20080200666A1.
  • Hsieh JW, Wu HS, Wei YH, et al. Determination and kinetics of producing glucosamine using fungi. Biotechnol Prog. 2007;23(5):1009–1016.
  • Chmielowski RA, Wu H-S, Wang SS. Scale-up of upstream and downstream operations for the production of glucosamine using microbial fermentation. Biotechnol J. 2007;2(8):996–1006.
  • Peng JW, Wu HS. Kinetic study of glucosamine production using Aspergillus sydowii BCRC 31742 under solid-state fermentation. Molecules. 2020;25(20):4832.
  • van Hengel AJ, Tadesse Z, Immerzeel P, et al. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 2001;125(4):1880–1890.
  • Ericson MC, Chrispeels MJ. Isolation and characterization of glucosamine-containing storage glycoproteins from the cotyledons of Phaseolus aureus. Plant Physiol. 1973;52(2):98–104.
  • Petiard V, Michaux S, Courtois D, inventors; Societe des Produits Nestle SA, assignee. Production of glucosamine from plant species. United States patent US8378090B2. 2013 Feb 19.
  • Dhillon GS, Kaur S, Brar SK, et al. Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol. 2013;33(4):379–403.
  • Sakurai Y, Lee TH, Shiota H. On the convenient method for glucosamine estimation in koji. Agric Biol Chem. 1977;41:619–624.
  • Ruiz-Terán F, Owens JD. Chemical and enzymic changes during the fermentation of bacteria-free soya bean tempe. J Sci Food Agric. 1996;71(4):523–530.
  • Yu KW, Kim YS, Shin KS, et al. Macrophage-stimulating activity of exo-biopolymer from cultured rice bran with Monascus pilosus. Appl Biochem Biotechnol. 2005;126(1):35–48.
  • Sitanggang AB, Wu HS, Wang SS, et al. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour Technol. 2010;101(10):3595–3601.
  • Cahyono E, Suptijah P, Wientarsih I. Development of a pressurized hydrolysis method for producing glucosamine. Asian J Agric Food Sci. 2014;2:390–396.
  • Kaur S, Dhillon GS. Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol. 2015;35(1):44–61.
  • Villa-Lerma G, González-Márquez H, Gimeno M, et al. Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour Technol. 2013;146:794–798.
  • Ajavakom A, Supsvetson S, Somboot A, et al. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydr Polym. 2012;90(1):73–77.
  • Arnold ND, Brück WM, Garbe D, et al. Enzymatic modification of native chitin and conversion to specialty chemical products. Mar Drugs. 2020;18(2):93.
  • Hamed I, Ozogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40–50.
  • Kumar M, Rajput M, Soni T, et al. Chemoenzymatic production and engineering of chitooligosaccharides and N-acetyl glucosamine for refining biological activities. Front Chem. 2020;8:469.
  • Liu L, Liu Y, Shin H, et al. Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol. 2013;97(14):6149–6158.
  • Xu J, Xu X, Tian L, et al. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci Rep. 2016;6:29012–29022.
  • Hamid R, Khan MA, Ahmad M, et al. Chitinases: an update. J Pharm Bioallied Sci. 2013;5(1):21–29.
  • Bartholomew ES, Black K, Feng Z, et al. Comprehensive analysis of the chitinase gene family in cucumber (Cucumis sativus L.): from gene identification and evolution to expression in response to Fusarium oxysporum. Int J Mol Sci. 2019;20:1–21.
  • Ebrahim S, Usha K, Singh B. Pathogenesis-related (PR)-proteins: chitinase and β-1,3-glucanase in defense mechanism against malformation in mango (Mangifera indica L.). Sci Hortic. 2011;130(4):847–852.
  • Renner T, Specht CD. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Mol Biol Evol. 2012;29(10):2971–2985.
  • González LMG, El Kayal W, Morris JS, et al. Diverse chitinases are invoked during the activity-dormancy transition in spruce. Tree Genet Genomes. 2015;11:1–21.
  • Sudisha J, Sharathchandra RG, Amruthesh KN, et al. Pathogenesis related proteins in plant defense response. In: Merillon JM, Ramawat KG, editors. Plant defence: biological control. New York (NY): Springer; 2011. p. 379–403.
  • Nagpure A, Choudhary B, Gupta RK. Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol. 2014;34(3):215–232.
  • Rathore AS, Gupta RD. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015;2015:791907–791908.
  • Bhattacharya D, Nagpure A, Gupta RK. Bacterial chitinases: properties and potential. Crit Rev Biotechnol. 2007;27(1):21–28.
  • Stepnov AA, Forsberg Z, Sorlie M, et al. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnol Biofuels. 2021;14(1):28.
  • Cazypedia – Auxiliary activity families https://www.cazypedia.org/index.php/Auxiliary_Activity_Families. (Accessed 5/25/21).
  • Cazypedia- Auxiliary activity Family 10; https://www.cazypedia.org/index.php/Auxiliary_Activity_Family_10. (Accessed 5/25/21).
  • Gudmundsson M, Kim S, Wu M, et al. Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoreduction. J Biol Chem. 2014;289(27):18782–18792.
  • Simmons TJ, Frandsen KEH, Ciano L, et al. Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nat Commun. 2017;8(1):1064.
  • CAZy – GH46 http://www.cazy.org/GH46.html. (Accessed 5/25/21).
  • Huang Z, Mao X, Lv X, et al. Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. Bioresour Technol. 2021;334:125241.
  • Mao X, Huang Z, Sun G, et al. High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. Bioresour Technol. 2021;341:125836.
  • da Silva AF, García-Fraga B, López-Seijas J, et al. Optimizing the expression of a heterologous chitinase: a study of different promoters. Bioengineered. 2017;8(4):428–432.
  • Zhang A, Mo X, Zhou N, et al. Identification of chitinolytic enzymes in Chitinolyticbacter meiyuanensis and mechanism of efficiently hydrolyzing chitin to N-acetyl glucosamine. Front Microbiol. 2020;11:1–11.
  • Okay S, Alshehri WA. Overexpression of chitinase a gene from Serratia marcescens in Bacillus subtilis and characterization of enhanced chitinolytic activity. Braz Arch Biol Technol. 2020;30:63.
  • Wang YT, Wu PL. Gene cloning, characterization, and molecular simulations of a novel recombinant chitinase from Chitinibacter tainanensis CT01 appropriate for chitin enzymatic hydrolysis. Polymers. 2020;12(8):1648.
  • Chambon R, Pradeau S, Fort S, et al. High yield production of rhizobium NodB chitin deacetylase and its use for in vitro synthesis of lipo-chitinoligosaccharide precursors. Carbohydr Res. 2017;442:25–30.
  • Côté N, Fleury A, Dumont-Blanchette É, et al. Two exo-beta-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Biochem J. 2006;394(3):675–686.
  • Johnsen MG, Hansen OC, Stougaard P. Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239. Microb Cell Fact. 2010;9(1):1–9.
  • Wang M, Zheng F, Wang T, et al. Characterization of Stackebrandtia nassauensis GH 20 beta-hexosaminidase, a versatile biocatalyst for chitobiose degradation. Int J Mol Sci. 2019;20(5):1243.
  • Krolicka M, Hinz SW, Koetsier MJ, et al. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization. J Agric Food Chem. 2018;66(7):1658–1669.
  • Cheng CY, Chang CH, Wu YJ, et al. Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. J Biol Chem. 2006;281(6):3137–3144.
  • Zhu XF, Tan HQ, Zhu C, et al. Cloning and overexpression of a new chitosanase gene from penicillium sp. D-1. AMB Express. 2012;2(1):13.
  • Tokuyasu K, Ohnishi-Kameyama M, Hayashi K, et al. Cloning and expression of chitin deacetylase gene from a deuteromycete, Colletotrichum lindemuthianum. J Biosci Bioeng. 1999;87(4):418–423.
  • Naqvi S, Cord-Landwehr S, Singh R, et al. A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl Environ Microbiol. 2016;82(22):6645–6655.
  • Kang L, Chen X, Zhai C, et al. Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris GS115. J Microbiol Biotechnol. 2012;22(9):1202–1207.
  • Lunetta JM, Johnson SM, Pappagianis D. Molecular cloning, characterization and expression analysis of two beta-N-acetylhexosaminidase homologs of Coccidioides posadasii. Med Mycol. 2010;48(5):744–756.
  • Moreau C, Tapin-Lingua S, Grisel S, et al. Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production. Biotechnol Biofuels. 2019;12(1):1–3.
  • Hegnar OA, Petrovic DM, Bissaro B, et al. pH-dependent relationship between catalytic activity and hydrogen peroxide production shown via characterization of a lytic polysaccharide monooxygenase from Gloeophyllum trabeum. Appl Environ Microbiol. 2019;85(5):e02612–e02618.
  • Tanaka T, Fukui T, Atomi H, et al. Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol. 2003;185(17):5175–5181.
  • Ramli AN, Mahadi NM, Rabu A, et al. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microb Cell Fact. 2011;10:93–94.
  • Horiuchi A, Aslam M, Kanai T, et al. A structurally novel chitinase from the chitin-degrading hyperthermophilic archaeon Thermococcus chitonophagus. Appl Environ Microbiol. 2016;82(12):3554–3562.
  • Konno N, Takahashi H, Nakajima M, et al. Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes (shiitake mushroom)). AMB Express. 2012;2(1):29.
  • Mekasha S, Tuveng TR, Askarian F, et al. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. J Biol Chem. 2020;295(27):9134–9146.
  • Suzuki K, Sugawara N, Suzuki M, et al. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem. 2002;66(5):1075–1083.
  • Sitanggang A, Sophia L, Wu H. Aspects of glucosamine production using microorganisms. Int Food Res J. 2012;19:393–404.
  • Deng MD, Severson DK, Grund AD, et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng. 2005;7(3):201–214.
  • Chatterjee S, Adhya M, Guha AK, et al. Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochem. 2005;40(1):395–400.
  • Omidvar M, Karimi K, Mohammadi M. Enhanced ethanol and glucosamine production from rice husk by NAOH pretreatment and fermentation by fungus Mucor hiemalis. Biofuel Res J. 2016;3(3):475–481.
  • Meng D, Wei X, Bai X, et al. Artificial in vitro synthetic enzymatic biosystem for the one-pot sustainable biomanufacturing of glucosamine from starch and inorganic ammonia. ACS Catal. 2020;10(23):13809–13819.
  • Zhang J, Liu L, Li J, et al. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level. Bioresour Technol. 2012;111:507–511.
  • Chen X, Liu L, Li J, et al. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresour Technol. 2012;110:534–538.
  • Chen X, Liu L, Li J, et al. Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by an engineered Escherichia coli. J Ind Microbiol Biotechnol. 2012;39(2):359–365.
  • Cardozo FA, Facchinatto WM, Colnago LA, et al. Bioproduction of N-acetyl-glucosamine from colloidal α-chitin using an enzyme cocktail produced by Aeromonas caviae CHZ306. World J Microbiol Biotechnol. 2019;35(8):1–3.
  • Kumar M, Madhuprakash J, Balan V, et al. Chemoenzymatic production of chitooligosaccharides employing ionic liquids and Thermomyces lanuginosus chitinase. Bioresour Technol. 2021;337:125399.
  • Zhang A, Wei G, Mo X, et al. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-d-glucosamine. Green Chem. 2018;20(10):2320–2327.
  • Liu Y, Liu L, Shin HD, et al. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab Eng. 2013;19:107–115.
  • Liu Y, Zhu Y, Li J, et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab Eng. 2014;23:42–52.
  • Ma W, Liu Y, Shin HD, et al. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour Technol. 2018;250:642–649.
  • Gu Y, Lv X, Liu Y, et al. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab Eng. 2019;51:59–69.
  • Deng C, Lv X, Li J, et al. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab Eng. 2021;67:330–346.
  • Seki K, Nishiyama Y, Mitsutomi M. Characterization of a novel exo-chitosanase, an exo-chitobiohydrolase from Gongronella butleri. J Biosci Bioeng. 2019;127(4):425–429.
  • Tran TN, Doan CT, Nguyen VB, et al. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res Chem Intermed. 2019;45(2):727–742.
  • Kim HS, Kim SK, Jeong GT. Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction. RSC Adv. 2018;8(6):3198–3205.
  • Jia L, Wang Y, Qiao Y, et al. Efficient one-pot synthesis of deoxyfructosazine and fructosazine from d-glucosamine hydrochloride using a basic ionic liquid as a dual solvent-catalyst. RSC Adv. 2014;4(83):44253–44260.
  • Dmytruk KV, Kshanovska BV, Abbas CA, et al. New methods for positive selection of yeast ethanol overproducing mutants. Bioethanol. 2016;2016:2.
  • Gao X, Chen X, Zhang J, et al. Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustainable Chem Eng. 2016;4(7):3912–3920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.