641
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Shellfish industrial waste reuse

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 50-66 | Received 26 Oct 2020, Accepted 21 Sep 2021, Published online: 21 Dec 2021

References

  • Regina S, Ferreira S, Albino S, et al. Tecnológica provenientes do resíduo De crustáceos E suas aplicações. 2016, p. 117–136.
  • Gustavsson J, Cederberg C, Sonesson U, et al. 2013. The methodology of the FAO study: “Global Food Losses and Food Waste - extent, causes and prevention” - FAO, 2011. In SIK report No. 857: Vol. SIK report (Issue 857). https://www.diva-portal.org/smash/get/diva2:944159/FULLTEXT01.pdf.
  • Meivelu Moovendhan Seedevi P, Vairamani S, Shanmugam A. Exploring the chemical composition and anticancer potential of oil from squid (loligo duvauceli) liver waste from fish processing industry. Waste Biomass Valorization. 2019;10(10):2967–2973.
  • Taylor T, Alasalvar C. Improved utilisation of fish and shellfish waste. In: Seafoods—quality, technology and nutraceutical applications. Berlin, Heidelberg: Springer; 2002. p. 123–136.
  • Taylor SL, Kabourek JL, Hefle SL. Fish allergy: fish and products thereof. Food Sci. 2004;69(8):R175–R180.
  • Food and Agriculture Organization. 2020. Fishery and aquaculture statistics. Global production by production source 1950-2018. Rome: FAO Fisheries and Aquaculture Department. www.fao.org/fishery/statistics/software/fishstatj/en.
  • Food and Agriculture Organization. 2020. The state of world fisheries and aquaculture. Rome: Food and Agriculture Organization.
  • Rinaudo M. Chitin and chitosan: properties and applications. Progr Polymer Sci. 2006;31(7):603–632.
  • El Knidri H, Belaabed R, Addaou A, et al. Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol. 2018;120(Pt A):1181–1189.
  • Sindhu S. Extraction, characterization, antioxidant and anti-Inflammatory properties of carotenoids from the shell waste of Arabian red shrimp aristeus alcocki, ramadan 1938. TOPROCJ. 2011;2(1):95–103.
  • Yan N, Chen X. Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature. 2015;524(7564):155–157.
  • Sowmya R, Rathinaraj K, Sachindra NM. An autolytic process for recovery of antioxidant activity rich carotenoprotein from shrimp heads. Mar Biotechnol. 2011;13(5):918–927.
  • Abdelmalek BE, Sila A, Haddar A, et al. β-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice. Int J Biol Macromol. 2017;104(Pt A):953–962.
  • Suryawanshi N, Jujjavarapu SE, Ayothiraman S. Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. Int J Environ Sci Technol. 2019;16(7):3877–3898.
  • Zhao J, Huang GR, Zhang MN, et al. Amino acid composition, molecular weight distribution and antioxidant stability of shrimp processing byproduct hydrolysate. Am J Food Technol. 2011;6(10):904–913. (Vol. Issue
  • Routray W, Dave D, Cheema SK, et al. Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Crit Rev Biotechnol. 2019;39(4):469–488.
  • Mao X, Guo N, Sun J, et al. Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J Cleaner Prod. 2017;143:814–823.
  • Suleria HAR, Gobe G, Masci P, et al. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci Technol. 2016;50:44–55.
  • Dun Y, Li Y, Xu J, et al. Simultaneous fermentation and hydrolysis to extract chitin from crayfish shell waste. Int J Biol Macromol. 2019;123:420–426.
  • Guo N, Sun J, Zhang Z, et al. Recovery of chitin and protein from shrimp head waste by endogenous enzyme autolysis and fermentation. J Ocean Univ China. 2019;18(3):719–726.
  • Hua KH, Wang HC, Chung RS, et al. Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J Pestic Sci. 2015;40(4):208–213.
  • Nunes AJP, Sabry-Neto H, Oliveira-Neto S, et al. Feed preference and growth response of juvenile litopenaeus vannamei to supplementation of marine chemoattractants in a fishmeal-challenged diet. J World Aquacult Soc. 2019;50(6):1048–1063.
  • Narayanasamy A, Balde A, Raghavender P, et al. Isolation of marine crab (charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatal Agric Biotechnol. 2020;25(February):101577.
  • Sah AK, Dewangan M, Suresh PK. Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces. 2019;178(February):185–198.
  • Zhang L, Wang H. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs. 2015;13(7):4310–4330.
  • Li S, Zhang F, Yu Y, et al. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr Polym. 2020;235:115983.
  • Tang D, Wang Y, Kang W, et al. Chitosan attenuates obesity by modifying the intestinal microbiota and increasing serum leptin levels in mice. J Funct Foods. 2020;64(44):103659.
  • Andonegi M, Heras K, Las Santos-Vizcaíno E, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr Polym. 2020;237(March):116159
  • Merz CR. Physicochemical and colligative investigation of α (shrimp shell)- and β (squid pen)-chitosan membranes: Concentration-Gradient-Driven water flux and ion transport for salinity gradient power and separation process operations. ACS Omega. 2019;4(25):21027–21040.
  • Bessa-Junior AP, Gonçalves AA. Análises econômica e produtiva da quitosana extraída do exoesqueleto de camarão economic and productive analysis of chitosan extracted from shrimp exoskeleton. Acta Fisheries Aquatic Res. 2013;1:13–28.
  • Ogawa M, Da Silva AIM, Ogawa NBP, et al. Adequações tecnológicas no processamento da carne de caranguejo. Ciencia e Tecnologia de Alimentos. 2008;28(1):78–82.
  • Lambertus AM, Broek V, den, Boeriu CG. 2020. Chitin and chitosan: properties and applications.
  • Abreu ADS, De Souza MM, Da Rocha M, et al. Functional properties of white shrimp (litopenaeus vannamei) by-Products protein recovered by isoelectric solubilization/precipitation. J Aquat Food Prod Technol. 2019;28(6):649–657.
  • Sila A, Sayari N, Balti R, et al. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 2014;148:445–452.
  • Djellouli M, López-Caballero ME, Arancibia MY, et al. Antioxidant and antimicrobial enhancement by reaction of protein hydrolysates derived from shrimp by-Products with glucosamine. Waste Biomass Valor. 2020;11(6):2491–2505.
  • Senphan T, Benjakul S, Kishimura H. Characteristics and antioxidative activity of carotenoprotein from shells of pacific white shrimp extracted using hepatopancreas proteases. Food Biosci. 2014;5:54–63.
  • Zaeni A, Safitri E, Fuadah B, et al. Microwave-Assisted hydrolysis of chitosan from shrimp shell waste for glucosammine hydrochlorid production. J Phys Conf Ser. 2017;846(1):012011.
  • Isa MT, Ameh AO, Tijjani M, et al. Extraction and characterization of chitin and chitosan from nigerian shrimps. Bioresour Technol. 2012;6(1):446–453.
  • Phuong PTD, Minh NC, Cuong HN, et al. Recovery of protein hydrolysate and chitosan from black tiger shrimp (Penaeus monodon) heads: approaching a zero waste process. J Food Sci Technol. 2017;54(7):1850–1856.
  • Bastiaens L, Soetemans L, D’Hondt E, et al. Sources of chitin and chitosan and their isolation. In: Chitin and chitosan. Wiley; 2019. p. 1–34.
  • Ya T, Simpson BK, Ramaswamy H, et al. Carotenoproteins from lobster waste as a potential feed supplement for cultured salmonids. Food Biotechnol. 1991;5(2):87–93.
  • Hamdi M, Nasri R, Dridi N, et al. Development of novel high-selective extraction approach of carotenoproteins from blue crab (portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chem. 2020;302:125334.
  • Abdulkarim A, Isa MT, Abdulsalam S, et al. Extraction and characterisation of chitin and chitosan from mussel shell. Civil Environ Res. 2013;3(2):108–115.
  • Cheng D, Zhang Y, Liu H, et al. An improving method for extracting total carotenoids in an aquatic animal chlamys nobilis. Food Chem. 2019;280:45–50. (May 2018),
  • Heffernan S, Giblin L, O'Brien N. Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem. 2021;359:129852.
  • Kerton FM, Liu Y, Omari KW, et al. Green chemistry and the ocean-based biorefinery. Green Chem. 2013;15(4):860–871.
  • Ghorbel-Bellaaj O, Jellouli K, Maalej H. Shrimp processing by-products protein hydrolysates: Evaluation of antioxidant activity and application in biomass and proteases production. Biocatal Biotransform. 2017;35(4):287–297.
  • Gortari MC, Hours RA. Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electron J Biotechnol. 2013;16(3):14.
  • Mao X, Liu P, He S, et al. Antioxidant properties of bio-active substances from shrimp head fermented by bacillus licheniformis OPL-007. Appl Biochem Biotechnol. 2013;171(5):1240–1252.
  • Mao X, Zhang J, Kan F, et al. Antioxidant production and chitin recovery from shrimp head fermentation with Streptococcus thermophilus. Food Sci Biotechnol. 2013;22(4):1023–1032.
  • Sun J, Mao X. An environmental friendly process for antarctic krill (euphausia superba) utilization using fermentation technology. J Cleaner Prod. 2016;127:618–623.
  • Cao W, Tian S, Wang H, et al. Release principle of peptides and amino acids during the autolysis of shrimp head from Litopenaeus vannamei after UV-C irradiation stress. Food Science & Nutrition. 2019;fsn3.1288.
  • Silva MKS, Senaarachchi WARK. Efficiency of biotransformation of shellfish waste to carotenoprotein by autolysis and crab-shrimp endo-enzymes. J Aquat Food Prod Technol. 2021;30(5):526–534.
  • Idowu AT, Igiehon OO, Idowu S, et al. Bioactivity potentials and general applications of fish protein hydrolysates. Int J Pept Res Ther. 2020;27(1):0123456789.
  • Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem. 2018;245:205–222.
  • Lammi C, Aiello G, Boschin G, et al. Multifunctional peptides for the prevention of cardiovascular disease: a new concept in the area of bioactive food-derived peptides. J Funct Foods. 2019;55(February):135–145.
  • Latorres JM, Aquino S, Rocha M, et al. Nanoencapsulation of white shrimp peptides in liposomes: Characterization, stability, and influence on bioactive properties. J Food Process Preserv. 2021;45(7):e15591.
  • Lima KO, DA Costa de Quadros C, Rocha MD, et al. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of stripped weakfish (cynoscion guatucupa). LWT. 2019;111:408–413.
  • Quadros CDC, DE; Lima KO, Bueno CHL, Fogaça , et al. C. Evaluation of the antioxidant and antimicrobial activity of protein hydrolysates and peptide fractions derived from colossoma macropomum and their effect on ground beef lipid oxidation. J Aquatic Food Product Technol. 2019;8850:1–12.
  • Rocha M, Alemán A, Baccan GC, et al. Anti-Inflammatory, antioxidant, and antimicrobial effects of underutilized fish protein hydrolysate. J Aquat Food Prod Technol. 2018;27(5):592–608.
  • Younes I, Ghorbel-Bellaaj O, Nasri R, et al. Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem. 2012;47(12):2032–2039.
  • Leal ALG, de Castro PF, de Lima JPV, et al. Use of shrimp protein hydrolysate in nile tilapia (oreochromis niloticus, L.) feeds. Aquacult Int. 2010;18(4):635–646.
  • Britton G, Liaaen-Jensen S, Pfander H. 2012. Carotenoids: handbook. (4th ed.). Springer Science & Business Media, Birkhäuser.
  • Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in crabs from marine and fresh waters of India. LWT. 2005;38(3):221–225.
  • Rehman A, Tong Q, Jafari SM, et al. Carotenoid-loaded nanocarriers: a comprehensive review. Adv Colloid Interface Sci. 2020;275:102048.
  • Sachindra NM, Bhaskar N, Mahendrakar NS. Carotenoids in different body components of indian shrimps. J Sci Food Agric. 2005;85(1):167–172.
  • Jothy PT, Rajesh Kannan R, Subramoniam T. Lipid and carotenoid metabolism in the developing embryos of the intertidal anomuran crab, emerita asiatica (milne edwards). Invertebrate Reproduc Devel. 2019;63(3):135–145.
  • Butler TO, McDougall GJ, Campbell R, et al. Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology. 2018;7(1).
  • Armenta RE, Guerrero-Legarreta I. Stability studies on astaxanthin extracted from fermented shrimp byproducts. J Agric Food Chem. 2009;57(14):6095–6100.
  • Hou Y, Shavandi A, Carne A, et al. Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol. 2016;46(11-12):1047–1116.
  • Prameela K, Smitha PV, Srilatha R, et al. 2011. Bioremediation of shrimp biowaste for recovery of industrially important chitin and carotenoids by ecofriendly process. Abstract book of the world congress on biotechnology. Hyderabad, India.
  • Sowmya R, Ravikumar TM, Vivek R, et al. Optimization of enzymatic hydrolysis of shrimp waste for recovery of antioxidant activity rich protein isolate. J Food Sci Technol. 2014;51(11):3199–3207.
  • Meilisza N, Jusadi D, Zairin M, et al. Digestibility, growth and pigmentation of astaxanthin, canthaxanthin or lutein diets in lake kurumoi rainbowfish, melanotaenia parva (allen) cultured species. Aquac Res. 2017;48(11):5517–5525.
  • Ignatz EH, Dumas A, Benfey TJ, et al. Growth performance and nutrient utilization of growth hormone transgenic female triploid atlantic salmon (salmo salar) reared at three temperatures in a land-based freshwater recirculating aquaculture system (RAS). Aquaculture. 2020;519:734896.
  • Liu F, Shi H, Zhuan Guo Q, et al. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (pelteobagrus fulvidraco). Fish Shellfish Immunol. 2016;51:125–135.
  • Kowsalya K, Vidya N, Vijayalakshmi V. 2019. Super nutritive marine astaxanthin, an effectual dietary carotenoid for neurodegenerative diseases.
  • Lopes C, Antelo LT, Franco-Uría A, et al. Chitin production from crustacean biomass: Sustainability assessment of chemical and enzymatic processes. J Cleaner Prod. 2018;172:4140–4151.
  • Fu D, Deng S, McClements DJ, et al. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized pickering emulsions: enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids. 2019;89:80–89.
  • Naguib YMA. Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem. 2000;48(4):1150–1154.
  • Harari A, Leikin Frenkel A, Barshack I, et al. Addition of fish oil to atherogenic high fat diet inhibited atherogenesis while olive oil did not, in LDL receptor KO mice. Nutr Metab Cardiovasc Dis. 2020;30(4):709–716.
  • Taksima T, Chonpathompikunlert P, Sroyraya M, et al. Effects of astaxanthin from shrimp shell on oxidative stress and behavior in animal model of alzheimer’s disease. Mar Drugs. 2019;17(11):628.
  • Ni Y, Nagashimada M, Zhuge F, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: a comparison with vitamin E. Sci Rep. 2015;5(November):17192–17115.
  • Suganya V, Anuradha V. In silico molecular docking of astaxanthin and sorafenib with different apoptotic proteins involved in hepatocellular carcinoma. Biocatal Agric Biotechnol. 2019;19(February):101076.
  • Roy JC, Salaün F, Giraud S, et al. Solubility of chitin: Solvents, solution behaviors and their related mechanisms. Solubil Polysacchar. 2017;1(7):109–127.
  • Shao Y, Ni Y, Yang J, et al. Astaxanthin inhibits proliferation and induces apoptosis and cell cycle arrest of mice H22 hepatoma cells. Med Sci Monit. 2016;22:2152–2160.
  • Özogul F, Hamed I, Özogul Y, et al. Crustacean by-products crustacean by-products. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Vol 3, Academic Press; 2018. p. 33–38.
  • Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40–50.
  • Van Dyken SJ, Locksley RM. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol. 2018;142(2):364–369.
  • Beaney P, Lizardi-Mendoza J, Healy M. Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol. 2005;80(2):145–e150.
  • Khanafari A, Marandi R, Sanatei S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Mental Health Sci Eng. 2008;5:19–24.
  • Sorokulova I, Krumnow A, Globa L, et al. Efficient decompo- sition of shrimp shell waste using Bacillus cereus and exiguobacterium acetyli- cum. J Ind Microbiol Biotechnol. 2009;36(8):1123–e1126.
  • Joseph SM, Krishnamoorthy S, Paranthaman R, et al. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technol Appl. 2021;2:100036.
  • Tao F, Cheng Y, Shi X, et al. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym. 2020;230:115658,
  • Sun G, Liu XK, McClements DJ, et al. Chitin nanofibers improve the stability and functional performance of pickering emulsions formed from colloidal zein. J Colloid Interface Sci. 2021;589(1):388–400.
  • Wu H, Williams GR, Wu J, et al. Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydr Polym. 2018;180:304–313.
  • Um-e-Aiman Nisar N, Tsuzuki T, Lowe A, et al. Chitin nanofibers trigger membrane bound defense signaling and induce elicitor activity in plants. Inter J Biol Macromol. 2021;178:253–262.
  • Fernández-Marín R, Labidi J, Andrés MÁ, et al. Using α-chitin nanocrystals to improve the final properties of poly (vinyl alcohol) films with Origanum vulgare essential oil. Polym Degrad Stab. 2020;179:109227.
  • Wang W, Xue C, Mao X. Chitosan: structural modification, biological activity and application. Int J Biol Macromol. 2020;164:4532–4546.
  • Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–1174.
  • Aranday-García R, Román Guerrero A, Ifuku S, et al. Successive inoculation of Lactobacillus brevis and rhizopus oligosporus on shrimp wastes for recovery of chitin and added-value products. Process Biochem. 2017;58(April):17–24.
  • Gamal RF, El-Tayeb TS, Raffat EI, et al. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. Int J Biol Macromol. 2016;91:598–608.
  • Hamdi M, Hajji S, Affes S, et al. Development of a controlled bioconversion process for the recovery of chitosan from blue crab (portunus segnis) exoskeleton. Food Hydrocolloids. 2018;77:534–548.
  • Zhang H, Jin Y, Deng Y, et al. Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr Res. 2012;362(May):13–20.
  • Cabrera JC, Cutsem PV. Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J. 2005;25(2):165–172.
  • Bonilla J, Fortunati E, Atarés L, et al. Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids. 2014;35:463–470.
  • Shajahan A, Shankar S, Sathiyaseelan A, et al. Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes. Int J Biol Macromol. 2017;104(Pt B):1449–1458.
  • Mohandas A, Deepthi S, Biswas R, et al. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact Mater. 2018;3(3):267–277.
  • Al-Manhel AJ, Al-Hilphy ARS, Niamah AK. Extraction of chitosan, characterisation and its use for water purification. J Saudi Soc Agric Sci. 2018;17(2):186–190.
  • Arvanitoyannis IS. The use of chitin and chitosan for food packaging applications. In: Chiellini E, editor. Environmentally compatible food packaging. Cambridge: CRC-Woodhead Publishing Series in Food Science, Technology and Nutrition; 2008. p. 137–158.
  • Tsai SY, Yu HT, Lin CP. Environmental influence analysis of marine waste-oyster shell-plastic bag for waste treatment. J Therm Anal Calorim. 2021;143(5):3877–3815.
  • Dutta J, Tripathi S, Dutta PK. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int. 2012;18(1):3–34.
  • El-Diasty EM, Nesreen ZE and Hoda AMA. Using of chitosan as antifungal agent in Kariesh Cheese. N Y Sci J. 2012;5(973):78–101.
  • Futalan CM, Kan CC, Dalida ML, et al. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym. 2011;83(2):528–536.
  • Yan X, Khor E, Lim L-Y. NII-Electronic library service. Chem Pharm Bull. 2000;48(7):941–946.
  • Paulo NM, Conceição M, da Bueno IA, et al. Chitosan film for treatment of cutaneous wound in a female cat. Acta Scientiae Vet. 2018;35(3):381.
  • Pan W, Dai C, Li Y, et al. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis. Biomaterials. 2020;239(February):119851.
  • Simon RR, Marks V, Leeds AR, et al. A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals. Diabetes Metab Res Rev. 2011;27(1):14–27.
  • Ma Q, Gao X. Categories and biomanufacturing methods of glucosamine. Appl Microbiol Biotechnol. 2019;103(19):7883–7889.
  • Sibi G, Dhananjaya K, Ravikumar KR, et al. Preparation of glucosamine hydrochloride from crustacean shell waste and it’s quantitation by RP-HPLC. Am Euras J Sci Res. 2013;8(2):63–67.
  • Farias BS, Grundmann DDR, Rizzi FZ, et al. Production of low molecular weight chitosan by acid and oxidative pathways: Effect on physicochemical properties. Food Res Inter. 2019;123:88–94.
  • Jollès P, Riccardo AAM. Chitin and Chitinases. Basel: Birkhäuser Verlag; 1999.
  • Montoya JM, Morales MV, Reyes C, et al. Sustainable production with obtaining glucosamine from crab exoskeletons. Cienc Rural. 2019;49(9).
  • Dhillon GS, Brar SK, Verma M, et al. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J. 2011;54(2):83–92.
  • Dostrovsky N, R; Towheed TE, Hudson RW, Anastassiades TP. The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature. Osteoarthritis Cartilage. 2011;19(4):375–380.
  • Ogata T, Ideno Y, Akai M, et al. Effects of glucosamine in patients with osteoarthritis of the knee: a systematic review and Meta-analysis. Clin Rheumatol. 2018;37(9):2479–2487.
  • Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med. 1999;340(24):1888–1899.
  • FAO/WHO. Interim summary of conclusions and dietary recommendations on total fat & fatty acids from the joint FAO/WHO expert consultation on fats and fatty acids in human nutrition. FAO/WHO Expert Consultation. 2008. http://www.who.int/nutrition/topics/FFA_summary_rec_conclusion.pdf%0Ahttp://www.who.int/nutrition/topics/FFA_summary_rec_conclusion.pdf?ua=1
  • Tacon AGJ, Lemos D, Metian M. Fish for health: Improved nutritional quality of cultured fish for human consumption. Rev Fisher Sci Aquacul. 2020;28:449–458.
  • Rubio-Rodríguez N, Beltrán S, Jaime I, et al. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Technol. 2010;11(1):1–12.
  • Yu IKM, Attard TM, Chen SS, et al. Supercritical carbon dioxide extraction of Value-Added products and thermochemical synthesis of platform chemicals from food waste. ACS Sustainable Chem Eng. 2019;7(2):2821–2829.
  • Zhou DY, Tong LEI, Zhu BW, et al. Extraction of lipid from abalone (haliotis discus hannai ino) gonad by supercritical carbon dioxide and enzyme assisted organic solvent methods. J Food Process Preserv. 2012;36(2):126–132.
  • Sánchez-Camargo AP, Martinez-Correa HA, Paviani LC, et al. Supercritical CO2 extraction of lipids and astaxanthin from brazilian redspotted shrimp waste (farfantepenaeus paulensis). J Supercrit Fluids. 2011;56(2):164–173.
  • Ahmadkelayeh S, Hawboldt K. Extraction of lipids and astaxanthin from crustacean by-products: a review on supercritical CO2 extraction. Trends Food Sci Technol. 2020;103:94–108. ).
  • Al Khawli F, Pateiro M, Domínguez R, et al. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar Drugs. 2019;17(12):689.
  • Kok FJ, Kromhout D. Atherosclerosis: Epidemiological studies on the health effects of a mediterranean diet. European Journal of Nutrition. 2004;43(0):1–5.
  • Gaggini M, Morelli M, Buzzigoli E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5(5):1544–1560.
  • Raatz S, Bibus D. 2016. Fish and fish oil in health and disease prevention. Elsevier Science Publishing Co. Inc., 1, 380.
  • Graciano MF, Leonelli M, Curi R, et al. Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. J Physiol Biochem. 2016;72(4):699–710.
  • He Y, Li J, Kodali S, et al. Rationale behind the near-ideal catalysis of candida antarctica lipase A (CAL-A) for highly concentrating ω-3 polyunsaturated fatty acids into monoacylglycerols. Food Chem. 2017;219:230–239.
  • Guu TW, Mischoulon D, Sarris J, et al. International society for nutritional psychiatry research practice guidelines for omega-3 fatty acids in the treatment of major depressive disorder. Psychother Psychosom. 2019;88(5):263–273.
  • Zhou MM, Che HX, Huang JQ, et al. Comparative study of different polar groups of EPA-Enriched phospholipids on ameliorating memory loss and cognitive deficiency in aged SAMP8 mice. Mol Nutr Food Res. 2018;62(7):1700637–1700613.
  • Elmasry K, Ibrahim AS, Abdulmoneim S, et al. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol. 2019;176(1):93–109.
  • Leineweber CG, Pietzner A, Zhang IW, et al. Assessment of the effect of sorafenib on omega-6 and omega-3 epoxyeicosanoid formation in patients with hepatocellular carcinoma. IJMS. 2020;21(5):1875–1811.
  • Ueno Y, Miyamoto N, Yamashiro K, et al. Omega-3 polyunsaturated fatty acids and stroke burden. IJMS. 2019;20(22):5549–5516.
  • Ahmed NM, Fathi AM, Mohamed MG, et al. Evaluation of new core-shell pigments on the anticorrosive performance of coated reinforced concrete steel. Prog Org Coat. 2020;140:105530.
  • Neues F, Epple M. Analysis of the composition of the cuticula (shell) of isopods. 2008. http://www.netzsch-thermal-analysis.com/download/R-302-08analysisofthecompositionofthecuticula(shell)ofisopods_386.pdf
  • Younes I, Hajji S, Rinaudo M, et al. Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin. Int J Biol Macromol. 2016;84:246–253.
  • Jin T, Zeng L, Lin Y, et al. Insecticide resistance of the Oriental fruit fly, bactrocera dorsalis (hendel) (diptera: Tephritidae), in mainland China. Pest Manag Sci. 2011;67(3):370–376.
  • Chierighinia D, Bridib R, da Rochac AA, et al. Possibilidades do uso das conchas de moluscos. Inter Workshop Adv Cleaner Produc. 2011;3:5. http://www.advancesincleanerproduction.net/third/files/sessoes/6A/6/Chierighini_D-Paper-6A6.pdf
  • Gonçalves AA, Ribeiro JLD. Do phosphates improve the seafood quality? Reality and legislation. Pan Am J Aquatic Sci. 2008;3(3):237–247.
  • Etemadian Y, Shabanpour B, Sadeghi Mahoonak AR, et al. Cryoprotective effects of polyphosphates on rutilus frisii kutum fillets during ice storage. Food Chem. 2011;129(4):1544–1551.
  • Wagutu AW, Machunda R, Jande YAC. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in east african Rift valley. J Hazard Mater. 2018;347:95–105.
  • Mendoza J, Legido J, Rubio S, et al. Systematic review: the adverse effects of sodium phosphate enema. Aliment Pharmacol Ther. 2007;26(1):9–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.