1,606
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Microalgae harvesting techniques: updates and recent technological interventions

, , & ORCID Icon
Pages 342-368 | Received 31 Jul 2020, Accepted 03 Dec 2021, Published online: 16 Feb 2022

References

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Rev. 2010;14(1):217–232.
  • Haveren J, Scott EL, Sanders J. Bulk chemicals from biomass. Biofuels, Bioprod Bioref. 2008;2(1):41–57.
  • Amin L, Hashim H, Mahadi Z, et al. Determinants of stakeholders' attitudes towards biodiesel. Biotechnol Biofuels. 2017;10(1):1–17.
  • Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol. 2017;37(1):37–52.
  • Han S-F, Jin W-B, Tu R-J, et al. Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol. 2015;35(2):255–268.
  • Zhan J, Rong J, Wang Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrogen Energy. 2017;42(12):8505–8517.
  • Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36(2):269–274.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Borowitzka MA, Moheimani NR. Algae for biofuels and energy. Algae for Biofuels and Energy. 2013;5:1–288.
  • Wei C, Huang Y, Liao Q, et al. The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density. Bioresour Technol. 2018;249:713–719.
  • Fuad N, Omar R, Kamarudin S, et al. Effective use of tannin based natural biopolymer, AFlok-BP1 to harvest marine microalgae Nannochloropsis sp. J Environ Chem Eng. 2018;6(4):4318–4328.
  • Gonçalves AL, Ferreira C, Loureiro JA, et al. Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics. Bioresour Bioprocess. 2015;2(1):21.
  • Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–178.
  • Xia L, Huang R, Li Y, et al. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS One. 2017;12(10):e0186434.
  • Uduman N, Qi Y, Danquah MK, et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renewable Sustainable Energy. 2010;2(1):012701.
  • Li S, Hu T, Xu Y, et al. A review on flocculation as an efficient method to harvest energy microalgae: mechanisms, performances, influencing factors and perspectives. Renewable Sustainable Energy Rev. 2020;131:110005.
  • Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal Research. 2019;44:101683.
  • Suparmaniam U, Lam MK, Uemura Y, et al. Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renewable Sustainable Energy Rev. 2019;115.
  • Ummalyma SB, Gnansounou E, Sukumaran RK, et al. Bioflocculation: an alternative strategy for harvesting of microalgae – an overview. Bioresour Technol. 2017;242:227–235.
  • Kumar N, Banerjee C, Jagadevan S. Cationically functionalized dextrin polymer as an efficient flocculant for harvesting microalgae. Energy Rep. 2020;6:2803–2815.
  • Molina Grima E, Belarbi EH, Acién Fernández FG, et al. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20(7–8):491–515.
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31(4):233–239.
  • Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Rev. 2010;14(2):557–577.
  • Kim J, Yoo G, Lee H, et al. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv. 2013;31(6):862–876.
  • Chen CY, Yeh KL, Aisyah R, et al. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.
  • Yin Z, Zhu L, Li S, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol. 2020;301:122804–122804.
  • Danquah MK, Ang L, Uduman N, et al. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol. 2009;84(7):1078–1083.
  • Singh G, Patidar SK. Microalgae harvesting techniques: a review. J Environ Manage. 2018;217:499–508.
  • Harun R, Singh M, Forde GM, et al. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable Sustainable Energy Rev. 2010;14(3):1037–1047.
  • Larronde-Larretche M, Jin X. Microalgal biomass dewatering using forward osmosis membrane: influence of microalgae species and carbohydrates composition. Algal Research. 2017;23:12–19.
  • Munshi FM, Church J, McLean R, et al. Dewatering algae using an aquaporin-based polyethersulfone forward osmosis membrane. Sep Purif Technol. 2018;204:154–161.
  • Hafiz MA, Hawari AH, Das P, et al. Comparison of dual stage ultrafiltration and hybrid ultrafiltration-forward osmosis process for harvesting microalgae (Tetraselmis sp.) biomass. Chem Eng Proc Process Intensification. 2020;157:108112.
  • Yazdanabad SK, Samimi A, Shokrollahzadeh S, et al. Microalgae biomass dewatering by forward osmosis: review and critical challenges. Algal Research. 2021;56:102323.
  • Ryu H, Kim K, Cho H, et al. Nutrient-driven forward osmosis coupled with microalgae cultivation for energy efficient dewatering of microalgae. Algal Research. 2020;48:101880.
  • Koley S, Prasad S, Bagchi SK, et al. Development of a harvesting technique for large-scale microalgal harvesting for biodiesel production. RSC Adv. 2017;7(12):7227–7237.
  • Landels A, Beacham TA, Evans CT, et al. Improving electrocoagulation floatation for harvesting microalgae. Algal Res. 2019;39:101446.
  • Hincapié Gómez E, Marchese AJ. An ultrasonically enhanced inclined settler for microalgae harvesting. Biotechnol Prog. 2015;31(2):414–423.
  • Marrone BL, Lacey RE, Anderson DB, et al. Review of the harvesting and extraction program within the national alliance for advanced biofuels and bioproducts. Algal Research. 2018;33:470–485.
  • Rubio J, Souza ML, Smith RW. OMWW_flotation_centerfugal.pdf. Miner Eng. 2002;15(3):139–155.
  • Gao S, Yang J, Tian J, et al. Electro-coagulation-flotation process for algae removal. J Hazard Mater. 2010;177(1–3):336–343.
  • Fan J, Hu YB, Li XY. Nanoscale Zero-Valent iron coated with magnesium hydroxide for effective removal of cyanobacteria from water. ACS Sustainable Chem Eng. 2018;6(11):15135–15142.
  • Toh PY, Ng BW, Chong CH, et al. Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv. 2014;4(8):4114–4121.
  • Hu YR, Guo C, Wang F, et al. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem Eng J. 2014;242:341–347.
  • Kumar N, Banerjee C, Kumar N, et al. A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresour Technol. 2019;271:383–390.
  • Roselet F, Vandamme D, Roselet M, et al. Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Res. 2015;10(1):183–188.
  • Papazi A, Makridis P, Divanach P. Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol. 2010;22(3):349–355.
  • Vajihinejad V, Gumfekar SP, Bazoubandi B, et al. Water soluble polymer flocculants: synthesis, characterization, and performance assessment. Macromol Mater Eng. 2019;304(2):1800526–1800543.
  • Chen J, Leng L, Ye C, et al. A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresour Technol. 2018;259:181–190.
  • Williams PJLB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3(5):554–590.
  • Gerardo ML, Van Den Hende S, Vervaeren H, et al. Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Research. 2015;11:248–262.
  • Henderson R, Parsons SA, Jefferson B. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 2008;42(8–9):1827–1845.
  • Reynolds CS. The ecology of freshwater phytoplankton. New York (NY): Cambridge university press; 1984.
  • Sharma KK, Garg S, Li Y, et al. Critical analysis of current microalgae dewatering techniques. Biofuels. 2013;4(4):397–407.
  • Dassey AJ, Theegala CS. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol. 2013;128:241–245.
  • Mathimani T, Mallick N. A comprehensive review on harvesting of microalgae for biodiesel – key challenges and future directions. Renewable Sustainable Energy Rev. 2018;91:1103–1120.
  • Ahmad AL, Mat Yasin NH, Derek CJC, et al. Crossflow microfiltration of microalgae biomass for biofuel production. Desalination. 2012;302:65–70.
  • Babel S, Takizawa S. Microfiltration membrane fouling and cake behavior during algal filtration. Desalination. 2010;261(1–2):46–51.
  • Petrus˘Evski B, Bolier G, Van Breemen AN, et al. Tangential flow filtration: a method to concentrate freshwater algae. Water Res. 1995;29(5):1419–1424.
  • Mazzuca Sobczuk T, Ibáñez González MJ, Molina Grima E, et al. Forward osmosis with waste glycerol for concentrating microalgae slurries. Algal Research. 2015;8:168–173.
  • Molitor HR, Schaeffer AK, Schnoor JL. Sustainably cultivating and harvesting microalgae through sedimentation and forward osmosis using wastes. ACS Omega. 2021;6(27):17362–17371.
  • Liu H, Chen Z, Guan Y, et al. Role and application of iron in water treatment for nitrogen removal: a review. Chemosphere. 2018;204:51–62.
  • Vandamme D, Pontes SCV, Goiris K, et al. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng. 2011;108(10):2320–2329.
  • Liu S, Abu Hajar HA, Riefler G, et al. Investigation of electrolytic flocculation for microalga: Scenedesmus sp. using aluminum and graphite electrodes. RSC Adv. 2018;8(68):38808–38817.
  • Moussa DT, El-Naas MH, Nasser M, et al. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manage. 2017;186(Pt 1):24–41.
  • Chatsungnoen T, Chisti Y. Flocculation and electroflocculation for algal biomass recovery. In: Pandey A, Chang J-S, Soccol CR, et al., editors. Biofuels from Algae (Second Edition): Amsterdam (Netherlands): Elsevier; 2019. p. 257–286.
  • Misra R, Guldhe A, Singh P, et al. Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: a sustainable approach for biodiesel production. Chem Eng J. 2014;255:327–333.
  • Xu L, Wang F, Li HZ, et al. Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol. 2010;85(11):1504–1507.
  • Bosma R, Van Spronsen WA, Tramper J, et al. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol. 2003;15(2/3):143–153.
  • Coons JE, Kalb DM, Dale T, et al. Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Research. 2014;6(PB):250–270.
  • Sivaramakrishnan R, Incharoensakdi A. Microalgae as feedstock for biodiesel production under ultrasound treatment – a review. Bioresour Technol. 2018;250:877–887.
  • Pragya N, Pandey KK, Sahoo PK. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable Sustainable Energy Rev. 2013;24:159–171.
  • Borlido L, Azevedo AM, Roque ACA, et al. Magnetic separations in biotechnology. Biotechnol Adv. 2013;31(8):1374–1385.
  • Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater. 2007;309(2):307–311.
  • Nyirő -Kósa I, Csákberényi Nagy D, Pósfai M. Size and shape control of precipitated magnetite nanoparticles. EJM. 2009;21(2):293–302.
  • Wyatt NB, Gloe LM, Brady PV, et al. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng. 2012;109(2):493–501.
  • Kumar Gupta S, Kumar NM, Guldhe A, et al. Wastewater to biofuels: comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecol Eng. 2018;117:62–68.
  • Gupta SK, Kumar M, Guldhe A, et al. Design and development of polyamine polymer for harvesting microalgae for biofuels production. Energy Convers Manage. 2014;85:537–544.
  • Rashid N, Rehman SU, Han JI. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem. 2013;48(7):1107–1110.
  • Şirin S, Trobajo R, Ibanez C, et al. Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol. 2012;24(5):1067–1080.
  • Teixeira CMLL, Kirsten FV, Teixeira PCN. Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol. 2012;24(3):557–563.
  • Zheng H, Gao Z, Yin J, et al. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol. 2012;112:212–220.
  • Hou J, Yang Z, Wang P, et al. Changes in Microcystis aeruginosa cell integrity and variation in microcystin-LR and proteins during tanfloc flocculation and floc storage. Sci Total Environ. 2018;626:264–273.
  • Peng C, Li S, Zheng J, et al. Harvesting microalgae with different sources of starch-based cationic flocculants. Appl Biochem Biotechnol. 2017;181(1):112–124.
  • Banerjee C, Ghosh S, Sen G, et al. Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym. 2013;92(1):675–681.
  • Banerjee C, Ghosh S, Sen G, et al. Study of algal biomass harvesting through cationic cassia gum, a natural plant based biopolymer. Bioresour Technol. 2014;151:6–11.
  • Gerchman Y, Vasker B, Tavasi M, et al. Effective harvesting of microalgae: comparison of different polymeric flocculants. Bioresour Technol. 2017;228:141–146.
  • Abo Markeb A, Llimós-Turet J, Ferrer I, et al. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 2019;159:490–500.
  • Hu YR, Wang F, Wang SK, et al. Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresour Technol. 2013;138:387–390.
  • Liu PR, Zhang HL, Wang T, et al. Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Res. 2016;19:86–95.
  • Kumar N, Banerjee C, Jagadevan SJBR. Identification, characterization, and lipid profiling of microalgae Scenedesmus sp. NC1, isolated from coal mine effluent with potential for biofuel production. Biotechnol Rep. 2021;30:e00621.
  • Wu Z, Zhu Y, Huang W, et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol. 2012;110:496–502.
  • Mayers JJ, Vaiciulyte S, Malmhäll-Bah E, et al. Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation. Algal Res. 2018;31:430–442.
  • Lee K, Na JG, Seo JY, et al. Magnetic-nanoflocculant-assisted water-nonpolar solvent interface sieve for microalgae harvesting. ACS Appl Mater Interfaces. 2015;7(33):18336–18343.
  • Augustine A, Tanwar A, Tremblay R, et al. Flocculation processes optimization for reuse of culture medium without pH neutralization. Algal Research. 2019;39:101437–101437.
  • Liu M, Wang Y, Chen L, et al. Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces. 2015;7(15):7961–7969.
  • Wang SK, Stiles AR, Guo C, et al. Harvesting microalgae by magnetic separation: a review. Algal Res. 2015;9:178–185.
  • Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res. 2015;54(24):6209–6233.
  • Teh CY, Budiman PM, Shak KPY, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res. 2016;55(16):4363–4389.
  • Hadjoudja S, Deluchat V, Baudu M. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci. 2010;342(2):293–299.
  • Xia L, Li Y, Huang R, et al. Effective harvesting of microalgae by coagulation–flotation. R Soc Open Sci. 2017;4(11).
  • Horan DM, Nigel,   editors. Handbook of water and wastewater microbiology. Elsevier: UK: Academic Press; 2003.
  • Anthony R, Sims R. Cationic starch for microalgae and total phosphorus removal from wastewater. J Appl Polym Sci. 2013;130(4):2572–2578.
  • Ødegaard H. Orthokinetic flocculation of phosphate precipitates in a multicompartment reactor with non-ideal flow. Kinetics of Wastewater Treatment. 1979;10:61–88.
  • Yang Z, Yang H, Jiang Z, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J Hazard Mater. 2013;254-255(1):36–45.
  • Hjorth M, Jørgensen BU. Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 2012;46(4):1045–1051.
  • Huang M, Wang Y, Cai J, et al. Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water. Water Res. 2016;98:128–137.
  • Rwehumbiza VM, Harrison R, Thomsen L. Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J. 2012;200–202:168–175.
  • Divakaran R, Pillai VN. Flocculation of kaolinite suspensions in water by chitosan. Water Res. 2001;35(16):3904–3908.
  • Vandamme D, Beuckels A, Markou G, et al. Reversible flocculation of microalgae using magnesium hydroxide. Bioenerg Res. 2015;8(2):716–725.
  • Lee CS, Chong MF, Robinson J, et al. A review on development and application of plant-based bioflocculants and grafted bioflocculants. Ind Eng Chem Res. 2014;53(48):18357–18369.
  • Van Haver L, Nayar S. Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications. Algal Res. 2017;24:167–180.
  • Salehizadeh H, Yan N, Farnood R. Recent advances in polysaccharide bio-based flocculants. Biotechnol Adv. 2018;36(1):92–119.
  • Santos AFS, Argolo ACC, Coelho LCBB, et al. Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Res. 2005;39(6):975–980.
  • Ghebremichael KA, Gunaratna KR, Henriksson H, et al. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Res. 2005;39(11):2338–2344.
  • Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 2004;55(1):77–93.
  • Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progress in Polymer Sci. 2009;34(7):641–678.
  • Kurniawati HA, Ismadji S, Liu JC. Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol. 2014;166:429–434.
  • Lu X, Xu Y, Sun W, et al. UV-initiated synthesis of a novel chitosan-based flocculant with high flocculation efficiency for algal removal. Sci Total Environ. 2017;609:410–418.
  • Wang JP, Yuan SJ, Wang Y, et al. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res. 2013;47(8):2643–2648.
  • Wang L, Liang W, Yu J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin. Environ Sci Technol. 2013;47(11):5771–5777.
  • Matamoros V, Uggetti E, Garcia J, et al. Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater. 2016;301:197–205.
  • Hansel PA, Guy Riefler R, Stuart BJ. Efficient flocculation of microalgae for biomass production using cationic starch. Algal Res. 2014;5(1):133–139.
  • Vandamme D, Foubert I, Meesschaert B, et al. Flocculation of microalgae using cationic starch. J Appl Phycol. 2010;22(4):525–530.
  • Blockx J, Verfaillie A, Eyley S, et al. Cationic cellulose nanocrystals for flocculation of microalgae: effect of degree of substitution and crystallinity. ACS Appl Nano Mater. 2019;2(6):3394–3403.
  • Banerjee C, Gupta P, Mishra S, et al. Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting. Int J Biol Macromol. 2012;51(4):456–461.
  • Mortimer DA. Synthetic polyelectrolytes—a review. Polym Int. 1991;25(1):29–41.
  • Mikulec J, Polakovičová G, Cvengroš J. Flocculation using polyacrylamide polymers for fresh microalgae. Chem Eng Technol. 2015;38(4):595–601.
  • Vasilieva SG, Shibzukhova KA, Morozov AS, et al. Harvesting of microalgae biomass with Polyethylenimine-Based sorbents. Moscow Univ Biolsci Bull. 2018;73(1):36–38.
  • Eyley S, Vandamme D, Lama S, et al. CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale. 2015;7(34):14413–14421.
  • Guo H, Hong C, Zhang C, et al. Bioflocculants' production from a cellulase-free xylanase-producing Pseudomonas boreopolis G22 by degrading biomass and its application in cost-effective harvest of microalgae. Bioresour Technol. 2018;255:171–179.
  • Bhattacharya A, Mathur M, Kumar P, et al. A rapid method for fungal assisted algal flocculation: critical parameters & mechanism insights. Algal Res. 2017;21:42–51.
  • Jiang JJW, Tu R, et al. Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi. Waste Biomass Valor. 2021;12(1):145–154
  • Salim S, Vermuë MH, Wijffels RH. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol. 2012;118:49–55.
  • Guo SL, Zhao XQ, Wan C, et al. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus as-6-1 for efficient biomass harvest. Bioresour Technol. 2013;145:285–289.
  • Wan C, Alam MA, Zhao XQ, et al. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol. 2015;184:251–257.
  • Ndikubwimana T, Zeng X, Liu Y, et al. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 2014;6:186–193.
  • Salim S, Kosterink NR, Tchetkoua Wacka ND, et al. Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J Biotechnol. 2014;174(1):34–38.
  • Lee SJ, Yoon BD, Oh HM. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques. 1998;12(7):553–556.
  • Li Y, Xu Y, Song R, et al. Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnol. 2018;18(1):1–10.
  • Li Y, Xu Y, Liu L, et al. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresour Technol. 2016;218:807–815.
  • Powell RJ, Hill RT, Voordouw G. Mechanism of algal aggregation by Bacillus sp. Strain RP1137. Appl Environ Microbiol. 2014;80(13):4042–4050.
  • Liu C, Wang K, Jiang JH, et al. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem Eng J. 2015;93:166–172.
  • Okaiyeto K, Nwodo UU, Okoli SA, et al. Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen. 2016;5(2):177–211.
  • Leng L, Li W, Chen J, et al. Co-culture of fungi-microalgae consortium for wastewater treatment: a review. Bioresour Technol. 2021; 330:125008.
  • Yang L, Li H, Wang Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresour Technol. 2019;275:35–43.
  • Prajapati SK, Bhattacharya A, Kumar P, et al. A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chem. 2016;18(19):5230–5238.
  • Yao S, Lyu S, An Y, et al. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol. 2019;126(2):359–368.
  • Liber JA, Bryson AE, Bonito G, et al. Harvesting microalgae for food and energy products. Small Methods. 2020;4(10):2000349.
  • Nguyen TDP, Le TVA, Show PL, et al. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol. 2019;272:34–39.
  • Tran NAT, Seymour JR, Siboni N, et al. Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata. Algal Res. 2017;26:302–311.
  • Brady PV, Pohl PI, Hewson JC. A coordination chemistry model of algal autoflocculation. Algal Res. 2014;5(1):226–230.
  • Wu M, Li J, Qin H, et al. Pre-concentration of microalga Euglena gracilis by alkalescent pH treatment and flocculation mechanism of Ca3(PO4)2. Mg3(PO4)2, and Derivatives. 2020;13:1–13.
  • Rashid N, Nayak M, Suh WI, et al. Efficient microalgae removal from aqueous medium through auto-flocculation: investigating growth-dependent role of organic matter. Environ Sci Pollut Res. 2019;26(26):27396–27406.
  • García-Pérez JS, Beuckels A, Vandamme D, et al. Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris. Algal Res. 2014;3:24–29.
  • Chen Z, Shao S, He Y, et al. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour Technol. 2020;302:122806–122806.
  • Liu J, Zhu Y, Tao Y, et al. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels. 2013;6(1):98–11.
  • Nguyen TDP, Frappart M, Jaouen P, et al. Harvesting Chlorella vulgaris by natural increase in pH: Effect of medium composition. Environ Technol. 2014;35(9–12):1378–1388.
  • Chatsungnoen T, Chisti Y. Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. J Appl Phycol. 2016;28(5):2697–2705.
  • Zhu L, Li Z, Hiltunen E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels. 2018;11(1):183–110.
  • Borges L, Morón-Villarreyes JA, D'Oca MGM, et al. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy. 2011;35(10):4449–4454.
  • Yang IS, Salama ES, Kim JO, et al. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Convers Manage. 2016;117:54–62.
  • Xu Y, Purton S, Baganz F. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol. 2013;129:296–301.
  • Farid MS, Shariati A, Badakhshan A, et al. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol. 2013;131:555–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.