1,057
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges

, , , , &
Pages 982-1000 | Received 14 Jan 2022, Accepted 09 Jun 2022, Published online: 22 Aug 2022

References

  • Scharff RL, Besser J, Sharp DJ, et al. An economic evaluation of PulseNet: a network for foodborne disease surveillance. Am J Prev Med. 2016;50(5 Suppl 1):S66–S73.
  • Bisht A, Kamble MP, Choudhary P, et al. A surveillance of food borne disease outbreaks in India: 2009–2018. Food Control. 2021;121:107630.
  • Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011;17(1):7–15.
  • Zhao X, Lin C-W, Wang J, et al. Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol. 2014;24(3):297–312.
  • Kohli C, Garg S. Food safety in India: an unfinished agenda. MAMC J Med Sci. 2015;1(3):131.
  • Mandal P, Biswas A, K C, et al. Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol. 2011;6(2):87–102.
  • Lee N, Kwon KY, Oh SK, et al. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-Eat food. Foodborne Pathog Dis. 2014;11(7):574–580.
  • Wolffs P, Norling B, Rådström P. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells. J Microbiol Methods. 2005;60(3):315–323.
  • Stephenson FH. Real-time PCR. In: Calculations for molecular biology and biotechnology. UK: Elsevier; 2016. p. 215–320.
  • Umesha S, Manukumar HM. Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit Rev Food Sci Nutr. 2018;58(1):84–104.
  • Mangal M, Bansal S, Sharma SK, et al. Molecular detection of foodborne pathogens: a rapid and accurate answer to food safety. Crit Rev Food Sci Nutr. 2016;56(9):1568–1584.
  • Valderrama WB, Dudley EG, Doores S, et al. Commercially available rapid methods for detection of selected food-borne pathogens. Crit Rev Food Sci Nutr. 2016;56(9):1519–1531.
  • Brackett RE, Beuchat LR. Methods and media for the isolation and cultivation of Listeria monocytogenes from various foods. Int J Food Microbiol. 1989;8(3):219–223.
  • Adzitey F, Huda N, Ali GRR. Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech. 2013;3(2):97–107.
  • Zhao T, Doyle MP. Evaluation of universal preenrichment broth for growth of heat-injured pathogens. J Food Prot. 2001;64(11):1751–1755.
  • Busta FF. Practical implications of injured microorganisms in food. J Milk Food Technol. 1976;39(2):138–145.
  • Hurst A. Bacterial injury: a review. Can J Microbiol. 1977;23(8):935–944.
  • Walker JM. 1987. The enzyme linked immunosorbent assay (ELISA). In: Walker JM, Gaastra W, editors. BT – techniques in molecular biology. Vol. 2. Boston (MA): Springer US. p. 82–97.
  • Farber JM, Speirs JI. Monoclonal antibodies directed against the flagellar antigens of Listeria species and their potential in EIA-Based methods. J Food Prot. 1987;50(6):479–484.
  • Butman BT, Plank MC, Durham RJ, et al. Monoclonal antibodies which identify a genus-specific Listeria antigen. Appl Environ Microbiol. 1988;54(6):1564–1569.
  • Kumar BK, Raghunath P, Devegowda D, et al. Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol. 2011;145(1):244–249.
  • Bolton FJ, Fritz E, Poynton S, et al. Rapid enzyme-linked immunoassay for detection of Salmonella in food and feed products: performance testing program. J AOAC Int. 2000;83(2):299–304.
  • Glynn B, Lahiff S, Wernecke M, et al. Current and emerging molecular diagnostic technologies applicable to bacterial food safety. Int J Dairy Tech. 2006;59(2):126–139.
  • Law J, Mutalib A, Chan N-S, et al. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2014;5:770.
  • Fung DYC. Rapid methods and automation in microbiology. Compr Rev Food Sci Food Saf. 2002;1(1):3–22.
  • Vieira-Pinto M, Oliveira M, Fernando B, et al. Rapid detection of Salmonella sp. in pork samples using fluorescent in situ hybridization: a comparison with VIDAS®-SLM system and ISO 6579 cultural method ISO 6579. Arq Bras Med Vet Zootec. 2007;59(6):1388–1393.
  • Gomez-Govea M, Solis L, Heredia N, et al. Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. J Food Agric Environ. 2012;10:152–156.
  • Carvalho RN, Oliveira A d, Mesquita A D, et al. PCR and ELISA (VIDAS ECO O157®) Escherichia coli O157:H7 identification in minas frescal cheese commercialized in Goiânia, GO. Braz J Microbiol. 2014;45:7–10.
  • Meyer C, Fredriksson-Ahomaa M, Sperner B, et al. Detection of Listeria monocytogenes in pork and beef using the VIDAS® LMO2 automated enzyme linked immunoassay method. Meat Sci. 2011;88(3):594–596.
  • Taha EG, Mohamed A, Srivastava KK, et al. Rapid detection of Salmonella in chicken meat using immunomagnetic separation, CHROmagar, ELISA and real-time polymerase chain reaction (RT-PCR). Int J Poultry Sci. 2010;9(9):831–835.
  • Pang B, Zhao C, Li L, et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal Biochem. 2018;542:58–62.
  • Di Febo T, Schirone M, Visciano P, et al. Development of a capture ELISA for rapid detection of Salmonella enterica in food samples. Food Anal Methods. 2019;12(2):322–330.
  • Denyes JM, Dunne M, Steiner S, et al. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Appl Environ Microbiol. 2017;83(12):e00277-17.
  • Kim G, Lim J, Mo C. A review on lateral flow test strip for food safety. J Biosyst Eng. 2015;40(3):277–283.
  • Shan S, Lai W, Xiong Y, et al. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J Agric Food Chem. 2015;63(3):745–753.
  • De Boer SH, López MM. New Grower-Friendly methods for plant pathogen monitoring. Annu Rev Phytopathol. 2012;50:197–218.
  • Shukla S, Leem H, Kim M. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal Bioanal Chem. 2011;401(8):2581–2590.
  • Kim G, Moon J-H, Park SB, et al. Image analysis of a lateral flow strip sensor for the detection of Escherichia coli O157:H7. J Biosyst Eng. 2013;38(4):335–340.
  • Kim T-H, Hwang HJ, Kim JH. Ultra-Fast on-Site molecular detection of foodborne pathogens using a combination of convection polymerase chain reaction and nucleic acid lateral flow immunoassay. Foodborne Pathog Dis. 2019;16(2):144–151.
  • Husakova M, Dziedzinska R, Slana I. Magnetic separation methods for the detection of Mycobacterium avium subsp. paratuberculosis in various types of matrices: a review. Biomed Res Int. 2017;2017:5869854.
  • DeCory TR, Durst RA, Zimmerman SJ, et al. Development of an immunomagnetic Bead-Immunoliposome fluorescence assay for rapid detection of Escherichia coli O157:H7 in aqueous samples and comparison of the assay with a standard microbiological method. Appl Environ Microbiol. 2005;71(4):1856–1864.
  • Ma K, Deng Y, Bai Y, et al. Rapid and simultaneous detection of Salmonella, Shigella, and Staphylococcus aureus in fresh pork using a multiplex real-time PCR assay based on immunomagnetic separation. Food Control. 2014;42:87–93.
  • Xu D, Ming X, Gan M, et al. Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation. J Immunol Methods. 2018;462:54–58.
  • Wang Z, Xianyu Y, Zhang Z, et al. Background signal-free magnetic bioassay for food-borne pathogen and residue of veterinary drug via Mn(VII)/Mn(II) interconversion. ACS Sens. 2019;4(10):2771–2777.
  • Beumer RR, te Giffel MC, de Boer E, et al. Growth of Listeria monocytogenes on sliced cooked meat products. Food Microbiol. 1996;13(4):333–340.
  • Hajra TK, Bag PK, Das SC, et al. Development of a simple latex agglutination assay for detection of Shiga toxin-producing Escherichia coli (STEC) by using polyclonal antibody against STEC. Clin Vaccine Immunol. 2007;14(5):600–604.
  • Ito H, Terai A, Kurazono H, et al. Cloning and nucleotide sequencing of vero toxin 2 variant genes from Escherichia coli O91 : H21 isolated from a patient with the hemolytic uremic syndrome. Microb Pathog. 1990;8(1):47–60.
  • Willshaw GA, Smith HR, Scotland SM, et al. Heterogeneity of Escherichia coli phages encoding vero cytotoxins: comparison of cloned sequences determining VT1 and VT2 and development of specific gene probes. J Gen Microbiol. 1987;133(5):1309–1317.
  • Bej AK, Mahbubani MH. Applications of the polymerase chain reaction in environmental microbiology. PCR Methods Appl. 1992;1(3):151–159.
  • Priyanka B, Patil RK, Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J Med Res. 2016;144(3):327–338.
  • Kumar A, Grover S, Batish V. Monitoring paneer for Listeria monocytogenes-a high risk food pathogen by multiplex PCR. Afr J Biotech. 2012;11:9452–9456.
  • Latha C, Anu CJ, Ajaykumar VJ, et al. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica typhimurium in meat and meat products using multiplex polymerase chain reaction. Vet World. 2017;10(8):927–931.
  • Ferrario C, Lugli GA, Ossiprandi MC, et al. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. Int J Food Microbiol. 2017;256:20–29.
  • Hu J, Huang R, Wang Y, et al. Development of duplex PCR-ELISA for simultaneous detection of Salmonella spp. and Escherichia coli O157: H7 in food. J Microbiol Methods. 2018;154:127–133.
  • Kumar A, Grover S, Batish VK. A multiplex PCR assay based on 16S rRNA and hly for rapid detection of L. monocytogenes in milk. Food Meas. 2014;8(3):155–163.
  • Kumar A, Grover S, Batish VK. Exploring specific primers targeted against different genes for a multiplex PCR for detection of Listeria monocytogenes. 3 Biotech. 2015;5(3):261–269.
  • Wei S, Daliri EB-M, Chelliah R, et al. Development of a multiplex real-time PCR for simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food samples. J Food Saf. 2019;39(1):e12558.
  • Yang J, Qi X-M, Wu Y-G. The application analysis of multiplex real-time polymerase chain reaction assays for detection of pathogenic bacterium in peritoneal dialysis-associated peritonitis. Blood Purif. 2019;47(4):337–345.
  • Brusa V, Galli L, Linares LH, et al. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat. J Microbiol Methods. 2015;119:10–17.
  • Nguyen LT, Gillespie BE, Nam HM, et al. Detection of Escherichia coli O157:H7 and Listeria monocytogenes in beef products by real-time polymerase chain reaction. Foodborne Pathog Dis. 2004;1(4):231–240.
  • Fu Z, Rogelj S, Kieft TL. Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol. 2005;99(1):47–57.
  • Massi N, Shirakawa M, Gotoh T, et al. Quantitative detection of Salmonella enterica serovar typhi from blood of suspected typhoid fever patients by real-time PCR. Int J Med Microbiol. 2005;295(2):117–120.
  • Patel JR, Bhagwat AA, Sanglay GC, et al. Rapid detection of Salmonella from hydrodynamic pressure-treated poultry using molecular beacon real-time PCR. Food Microbiol. 2006;23(1):39–46.
  • Singh J, Batish VK, Grover S. Simultaneous detection of Listeria monocytogenes and Salmonella spp. in dairy products using real time PCR-melt curve analysis. J Food Sci Technol. 2012;49(2):234–239.
  • Wei C, Zhong J, Hu T, et al. Simultaneous detection of Escherichia coli O157:H7, Staphylococcus aureus and Salmonella by multiplex PCR in milk. 3 Biotech. 2018;8(1):76.
  • Cady NC, Stelick S, Kunnavakkam MV, et al. Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sensors Actuators B Chem. 2005;107(1):332–341.
  • Singh J, Batish VK, Grover S. A molecular beacon-based duplex real-time polymerase chain reaction assay for simultaneous detection of Escherichia coli O157:H7 and Listeria monocytogenes in milk and milk products. Foodborne Pathog Dis. 2009;6(10):1195–1201.
  • Nasrabadi Z, Ranjbar R, Poorali F, et al. Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electron Physician. 2017;9(5):4405–4411.
  • Trinh KTL, Trinh TND, Lee NY. Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens. Biosens Bioelectron. 2019;135:120–128.
  • Yamazaki W, Ishibashi M, Kawahara R, et al. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus. BMC Microbiol. 2008;8:163.
  • Su J, Liu X, Cui H, et al. Rapid and simple detection of methicillin-resistance Staphylococcus aureus by orfX loop-mediated isothermal amplification assay. BMC Biotechnol. 2014;14:8.
  • Xu X, Zhang S, Wu Q, et al. Development and application of a loop-mediated isothermal amplification (LAMP) method for rapid and sensitive detection of Enterococcus faecalis in drinking water. J Food Saf. 2014;34(2):103–110.
  • Norton DM, Batt CA. Detection of viable Listeria monocytogenes with a 5′ nuclease PCR assay. Appl Environ Microbiol. 1999;65(5):2122–2127.
  • Goel G, Kumar A, Puniya AK, et al. Molecular beacon: a multitask probe. J Appl Microbiol. 2005;99(3):435–442.
  • Bélanger SD, Boissinot M, Ménard C, et al. Rapid detection of Shiga toxin-producing bacteria in feces by multiplex PCR with molecular beacons on the smart cycler. J Clin Microbiol. 2002;40(4):1436–1440.
  • Wang X, Jothikumar N, Griffiths M. Enrichment and DNA extraction protocols for the simultaneous detection of Salmonella and Listeria monocytogenes in raw sausage meat with multiplex real-time PCR. J Food Prot. 2004;67(1):189–192.
  • Nurjayadi M, Pertiwi YP, Islami N, et al. Detection of the Salmonella typhi bacteria in contaminated egg using real-time PCR to develop rapid detection of food poisoning bacteria. Biocatal Agric Biotechnol. 2019;20:101214.
  • Kumar A, Goel G, Fehrenbach E, et al. Microarrays: the technology, analysis and application. Eng Life Sci. 2005;5(3):215–222.
  • Umesha S, H MM. Advanced molecular diagnostic techniques for detection of food-borne pathogens; current applications and future challenges. Crit Rev Food Sci Nutr. 2016;58:84–104.
  • Lauri A, Mariani PO. Potentials and limitations of molecular diagnostic methods in food safety. Genes Nutr. 2009;4(1):1–12.
  • Li Y, Liu D, Cao B, et al. Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli strains. J Clin Microbiol. 2006;44(12):4376–4383.
  • Wang X-W, Zhang L, Jin L-Q, et al. Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. Appl Microbiol Biotechnol. 2007;76(1):225–233.
  • Ranjbar R, Behzadi P, Najafi A, et al. DNA microarray for rapid detection and identification of food and water borne bacteria: from dry to wet lab. Open Microbiol J. 2017;11:330–338.
  • Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clin Chim Acta. 2006;363(1–2):206–220.
  • Hamels S, Gala J-L, Dufour S, et al. Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance. Biotechniques. 2001;31(6):1364–1372.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63.
  • Xu Z, Li L, Chu J, et al. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res Int. 2012;47(2):166–173.
  • Chen H, Zhang J, Sun D, et al. Development of reverse transcription loop-mediated isothermal amplification for rapid detection of H9 avian influenza virus. J Virol Methods. 2008;151(2):200–203.
  • Han F, Ge B. Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int J Food Microbiol. 2010;142(1–2):60–66.
  • Shao Y, Zhu S, Jin C, et al. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int J Food Microbiol. 2011;148(2):75–79.
  • Ye Y, Wang B, Huang F, et al. Application of in situ loop-mediated isothermal amplification method for detection of Salmonella in foods. Food Control. 2011;22(3–4):438–444.
  • Hara-Kudo Y, Konishi N, Ohtsuka K, et al. Detection of verotoxigenic Escherichia coli O157 and O26 in food by plating methods and LAMP method: a collaborative study. Int J Food Microbiol. 2008;122(1–2):156–161.
  • Ohtsuka K, Yanagawa K, Takatori K, et al. Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl Environ Microbiol. 2005;71(11):6730–6735.
  • Song T, Toma C, Nakasone N, et al. Sensitive and rapid detection of shigella and enteroinvasive Escherichia coli by a loop-mediated isothermal amplification method. FEMS Microbiol Lett. 2005;243(1):259–263.
  • Yamazaki W, Taguchi M, Kawai T, et al. Comparison of loop-mediated isothermal amplification assay and conventional culture methods for detection of Campylobacter jejuni and Campylobacter coli in naturally contaminated chicken meat samples. Appl Environ Microbiol. 2009;75(6):1597–1603.
  • Hu L, Ma LM, Zheng S, et al. Evaluation of 3M molecular detection system and ANSR pathogen detection system for rapid detection of Salmonella from egg products. Poult Sci. 2017;96(5):1410–1418.
  • Velusamy V, Arshak K, Korostynska O, et al. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010;28(2):232–254.
  • Zhang G. Foodborne pathogenic bacteria detection: an evaluation of current and developing methods. Meducator. 2013;1(24):28–30.
  • Masdor NA, Altintas Z, Shukor MY, et al. Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance. Sci Rep. 2019;9(1):13642.
  • Oh SY, Heo NS, Shukla S, et al. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci Rep. 2017;7(1):10130.
  • Wu S, Duan N, Shen M, et al. Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. Mikrochim Acta. 2019;186(7):401.
  • Leonard P, Hearty S, Quinn J, et al. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron. 2004;19(10):1331–1335.
  • Demarco D, Lim D. Detection of Escherichia coli O157:H7 in 10- and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J Food Prot. 2002;65(4):596–602.
  • Hesari N, Alum A, Elzein M, et al. A biosensor platform for rapid detection of E. coli in drinking water. Enzyme Microb Technol. 2015;83:22–28.
  • Liu J, Jasim I, Abdullah A, et al. An integrated impedance biosensor platform for detection of pathogens in poultry products. Sci Rep. 2018;8(1):16109.
  • Liu J, Jasim I, Shen Z, et al. A microfluidic based biosensor for rapid detection of Salmonella in food products. PLOS One. 2019;14(5):e0216873.
  • Tam PD, Thang CX. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection. Mater Sci Eng C Mater Biol Appl. 2016;58:953–959.
  • Zhong M, Yang L, Yang H, et al. An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron. 2019;126:493–500.
  • Rao VK, Sharma MK, Goel AK, et al. Amperometric immunosensor for the detection of Vibrio cholerae O1 using disposable screen-printed electrodes. Anal Sci. 2006;22(9):1207–1211.
  • Ait Lahcen A, Arduini F, Lista F, et al. Label-free electrochemical sensor based on spore-imprinted polymer for Bacillus cereus spore detection. Sensors Actuators B Chem. 2018;276:114–120.
  • Jiang D, Liu F, Liu C, et al. Induction of an electrochemiluminescence sensor for DNA detection of Clostridium perfringens based on rolling circle amplification. Anal Methods. 2014;6(5):1558–1562.
  • Vaughan RD, O’Sullivan CK, Guilbault GG. Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme Microb Technol. 2001;29(10):635–638.
  • Pohanka M, Skládal P, Pavliš O. Label‐free piezoelectric immunosensor for rapid assay of Escherichia coli. J Immunoassay Immunochem. 2008;29(1):70–79.
  • Hamula CLA, Guthrie JW, Zhang H, et al. Selection and analytical applications of aptamers. Trends Anal Chem. 2006;25(7):681–691.
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822.
  • Tuerk C, MacDougal S, Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA. 1992;89(15):6988–6992.
  • Pan Q, Zhang X-L, Wu H-Y, et al. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob Agents Chemother. 2005;49(10):4052–4060.
  • Duan N, Wu S, Chen X, et al. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. J Agric Food Chem. 2012;60(16):4034–4038.
  • Duan N, Wu S, Chen X, et al. Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX). J Agric Food Chem. 2013;61(13):3229–3234.
  • Wang YX, Ye ZZ, Si CY, et al. Application of aptamer based biosensors for detection of pathogenic microorganisms. Chinese J Anal Chem. 2012;40(4):634–642.
  • Bruno J. Fluorescent DNA aptamer-magnetic bead sandwich assays and portable fluorometer for sensitive and rapid foodborne pathogen detection and epidemiology. J Infect Dis Epidemiol. 2016;2(1):1–6.
  • Wang X, Huang Y, Wu S, et al. Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. Int J Food Microbiol. 2016;237:172–179.
  • Wang Q, Yang Q, Wu W. Graphene-Based steganographic aptasensor for information computing and monitoring toxins of biofilm in food. Front Microbiol. 2019;10:3139.
  • Sun Y, Duan N, Ma P, et al. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. J Agric Food Chem. 2019;67(8):2313–2320.
  • Wu W, Li M, Wang Y, et al. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res Lett. 2012;7(1):658.
  • Kim Y-J, Kim H-S, Chon J-W, et al. New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Anal Chim Acta. 2018;1029:78–85.
  • Muniandy S, Dinshaw IJ, Teh SJ, et al. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Anal Bioanal Chem. 2017;409(29):6893–6905.
  • Suh SH, Jaykus L-A. Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol. 2013;167(4):454–461.
  • Sheikhzadeh E, Chamsaz M, Turner APF, et al. Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron. 2016;80:194–200.
  • Xu M, Wang R, Li Y. Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta. 2017;162:511–522.
  • Chang Y-C, Yang C-Y, Sun R-L, et al. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci Rep. 2013;3:1863.
  • Yoo S, Kim D-K, Lee SY. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 2015;132:112–117.
  • Vaisocherová-Lísalová H, Visova I, Ermini ML, et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron. 2016;80:84–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.