840
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications

ORCID Icon, , , , , , , , & show all
Pages 1073-1091 | Received 03 Nov 2021, Accepted 02 Apr 2022, Published online: 23 Aug 2022

References

  • Jiang W, Hernández Villamor D, Peng H, et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol. 2021;17(8):845–855.
  • Guirimand G, Kulagina N, Papon N, et al. Innovative tools and strategies for optimizing yeast cell factories. Trends Biotechnol. 2021;39(5):488–504.
  • Luo ZS, Yu SQ, Zeng WZ, et al. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv. 2021;47:107706.
  • Xu X, Liu Y, Du G, et al. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020;38(7):779–796.
  • Zhou S, Yuan SF, Nair PH, et al. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng. 2021;67:41–52.
  • Doong SJ, Gupta A, Prather KLJ. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci USA. 2018;115(12):2964–2969.
  • Luo Z, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng. 2020;61:344–351.
  • Qiu Y, Zhu Y, Sha Y, et al. Development of a robust Bacillus amyloliquefaciens cell factory for efficient poly(γ-glutamic acid) production from Jerusalem artichoke. ACS Sustainable Chem Eng. 2020;8(26):9763–9774.
  • Qiu Y, Zhu Y, Zhan Y, et al. Systematic unravelling of the inulin hydrolase from Bacillus amyloliquefaciens for efficient conversion of inulin to poly-(gamma-glutamic acid). Biotechnol Biofuels. 2019;12(1):145.
  • Sha Y, Qiu Y, Zhu Y, et al. CRISPRi-based dynamic regulation of hydrolase for the synthesis of poly-γ-glutamic acid with variable molecular weights. ACS Synth Biol. 2020;9(9):2450–2459.
  • Sha YY, Huang YY, Zhu YF, et al. Efficient biosynthesis of low-molecular-weight poly-gamma-glutamic acid based on stereochemistry regulation in Bacillus amyloliquefaciens. ACS Synth Biol. 2020;9(6):1395–1405.
  • Zhang J, Xu X, Li X, et al. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens. Int J Biol Macromol. 2021;167:777–786.
  • Kumar S, Haq I, Prakash J, et al. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech. 2017;7(1):20.
  • Zhang Y, Li S, Liu L, et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour Technol. 2013;130:256–260.
  • Priest FG, Goodfellow M, Shute LA, et al. Bacillus amyloliquefaciens sp. nov., nom. rev. Int J Syst Bacteriol. 1987;37(1):69–71.
  • Dietel K, Beator B, Budiharjo A, et al. Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol J. 2013;29(1):59–66.
  • Chen XH, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol. 2009;140(1-2):27–37.
  • Zhao X, Zheng H, Zhen J, et al. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205. Int J Biol Macromol. 2020;165(Pt A):609–618.
  • Du R, Zhao F, Qiao X, et al. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Prep Biochem Biotechnol. 2018;48(8):768–774.
  • Jiang C, Ruan L, Wei X, et al. Enhancement of S-adenosylmethionine production by deleting thrB gene and overexpressing SAM2 gene in Bacillus amyloliquefaciens. Biotechnol Lett. 2020;42(11):2293–2298.
  • Deb P, Talukdar SA, Mohsina K, et al. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus. 2013;2(1):154.
  • Uygut MA, Tanyildizi MŞ. Optimization of alpha-amylase production by Bacillus amyloliquefaciens grown on orange peels. Iran J Sci Technol Trans Sci. 2018;42(2):443–449.
  • Zhang W, Gao W, Feng J, et al. A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Appl Microbiol Biotechnol. 2014;98(21):8963–8973.
  • Feng J, Gu Y, Quan Y, et al. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng. 2015;32:106–115.
  • Gao W, Zhang Z, Feng J, et al. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens. FEMS Microbiol Lett. 2016;363(17):fnw187.
  • Gao W, He Y, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-gamma-glutamic acid synthesis. Microb Biotechnol. 2019;12(5):932–945.
  • Maina S, Mallouchos A, Nychas G-JE, et al. Bioprocess development for (2R,3R)-butanediol and acetoin production using very high polarity cane sugar and sugarcane molasses by a Bacillus amyloliquefaciens strain. J Chem Technol Biot. 2019;94(7):2167–2177.
  • Wang S, Luo Q, Liu J, et al. Mutation and fermentation optimization of Bacillus amyloliquefaciens for acetoin production. Sheng wu Gong Cheng Xue Bao = Chin J Biotechnol. 2018;34(5):803–811.
  • Maina S, Schneider R, Alexandri M, et al. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresour Technol. 2021;335:125155.
  • Yang T, Zhang X, Rao Z, et al. Optimization and scale-up of 2,3-butanediol production by Bacillus amyloliquefaciens B10-127. World J Microbiol Biotechnol. 2012;28(4):1563–1574.
  • Yang T, Rao Z, Zhang X, et al. Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact. 2015;14:122.
  • Yang TW, Rao ZM, Zhang X, et al. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol. 2013;97(17):7651–7658.
  • Yang T, Rao Z, Zhang X, et al. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol. 2011;51(6):650–658.
  • John RP, Gangadharan D, Madhavan Nampoothiri K. Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes. Bioresour Technol. 2008;99(17):8008–8015.
  • Sato S, Tokuda H, Nakanishi K. L-lactic acid production from starch in a mixed culture of Bacillus amyloliquefaciens and Lactococcus lactis. JBrewSocJapan. 2002;97(7):515–521.
  • Feng J, Gu Y, Han L, et al. Construction of a Bacillus amyloliquefaciens strain for high purity levan production. FEMS Microbiol Lett. 2015;362(11):fnv079.
  • Gu Y, Zheng J, Feng J, et al. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Appl Microbiol Biotechnol. 2017;101(10):4163–4174.
  • Zhang T, Li R, Qian H, et al. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr Polym. 2014;101:975–981.
  • Wu W-J, Ahn B-Y. Isolation and identification of Bacillus amyloliquefaciens BY01 with high productivity of menaquinone for cheonggukjang production. J Korean Soc Appl Biol Chem. 2011;54(5):783–789.
  • Xu JZ, Zhang WG. Menaquinone-7 production from maize meal hydrolysate by bacillus isolates with diphenylamine and analogue resistance. J Zhejiang Univ Sci B. 2017;18(6):462–473.
  • Xu JZ, Yan WL, Zhang WG. Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv. 2017;7(45):28527–28534.
  • Liu N, Ruan H, Liu L, et al. Temperature-induced mutagenesis-based adaptive evolution of Bacillus amyloliquefaciens for improving the production efficiency of menaquinone-7 from starch. J Chem Technol Biotechnol. 2021;96(4):1040–1048.
  • Wu W-J, Ahn B-Y. Improved menaquinone (vitamin K2) production in cheonggukjang by optimization of the fermentation conditions. Food Sci Biotechnol. 2011;20(6):1585–1591.
  • Zhi Y, Wu Q, Xu Y. Production of surfactin from waste distillers' grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresour Technol. 2017;235:96–103.
  • Zhang F, Huo K, Song X, et al. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Microb Cell Fact. 2020;19(1):223.
  • Zhu Z, Zhang F, Wei Z, et al. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Manage. 2013;127:96–102.
  • Yang N, Wu Q, Xu Y. Fe nanoparticles enhanced surfactin production in Bacillus amyloliquefaciens. ACS Omega. 2020;5(12):6321–6329.
  • Liu X, Ren B, Gao H, et al. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One. 2012;7(5):e34430.
  • Dang Y, Zhao F, Liu X, et al. Enhanced production of antifungal lipopeptide iturin a by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Fact. 2019;18(1):68.
  • Zou D, Li L, Min Y, et al. Biosynthesis of a novel bioactive metabolite of spermidine from Bacillus amyloliquefaciens: gene mining, sequence analysis, and combined expression. J Agric Food Chem. 2021;69(1):267–274.
  • Sun J, Liu Y, Lin F, et al. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J Appl Microbiol. 2021;131(3):1289–1304.
  • Shahzad R, Khan AL, Waqas M, et al. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics. 2019;15(2):16.
  • Vinci G, Cozzolino V, Mazzei P, et al. Effects of Bacillus amyloliquefaciens and different phosphorus sources on maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil. 2018;429(1-2):437–450.
  • Hossain MJ, Ran C, Liu K, et al. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. Front Plant Sci. 2015;6:631.
  • Kröber M, Verwaaijen B, Wibberg D, et al. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. J Biotechnol. 2016;231:212–223.
  • Kierul K, Voigt B, Albrecht D, et al. Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology. 2015;161(Pt 1):131–147.
  • Chae TU, Choi SY, Kim JW, et al. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol. 2017;47:67–82.
  • Qiao JQ, Tian DW, Huo R, et al. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ-PhrQ system in Bacillus amyloliquefaciens B3. Plasmid. 2011;65(2):141–149.
  • Qiu Y, Zhu Y, Zhang Y, et al. Characterization of a regulator pgsR on endogenous plasmid p2Sip and its complementation for poly(gamma-glutamic acid) accumulation in Bacillus amyloliquefaciens. J Agric Food Chem. 2019;67(13):3711–3722.
  • Jeong DE, Park SH, Pan JG, et al. Genome engineering using a synthetic gene circuit in Bacillus subtilis. Nucleic Acids Res. 2015;43(6):e42.
  • Croux C, Nguyen NP, Lee J, et al. Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum. Biotechnol Biofuels. 2016;9:23.
  • Kim SY, Park SY, Choi SK, et al. Biosynthesis of polymyxins B, E, and P using genetically engineered polymyxin synthetases in the surrogate host Bacillus subtilis. J Microbiol Biotechnol. 2015;25(7):1015–1025.
  • Zhou C, Shi L, Ye B, et al. pheS (*), an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol. 2017;101(1):217–227.
  • Zhao X, Xu J, Tan M, et al. Construction of a plasmid interspecific transfer system in bacillus species with the counter-selectable marker mazF. J Ind Microbiol Biotechnol. 2018;45(6):417–428.
  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–844.
  • Lee HJ, Lee SJ. Advances in accurate microbial genome-editing CRISPR technologies. J Microbiol Biotechnol. 2021;31(7):903–911.
  • Wang H, Zhang X, Qiu J, et al. Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. J Ind Microbiol Biotechnol. 2019;46(1):113–123.
  • Liao Y, Huang L, Wang B, et al. The global transcriptional landscape of Bacillus amyloliquefaciens XH7 and high-throughput screening of strong promoters based on RNA-seq data. Gene. 2015;571(2):252–262.
  • Liao Y, Wang B, Ye Y, et al. Determination and optimization of a strong promoter element from Bacillus amyloliquefaciens by using a promoter probe vector. Biotechnol Lett. 2018;40(1):119–126.
  • Liu X, Cai X, Chen H. Clone and identification of a strong promoter from Bacillus amyloliquefaciens. Food Fermentation Ind. 2019;45(1):41.
  • van Dam S, Võsa U, van der Graaf A, et al. Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform. 2018;19(4):575–592.
  • Omony J, de Jong A, Krawczyk AO, et al. Dynamic sporulation gene co-expression networks for Bacillus subtilis 168 and the food-borne isolate Bacillus amyloliquefaciens: a transcriptomic model. Microb Genom. 2018;4(2):e000157.
  • Chen X, Gao C, Guo L, et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev. 2018;118(1):4–72.
  • Li L, Zou D, Ji A, et al. Multilevel metabolic engineering of Bacillus amyloliquefaciens for production of the platform chemical putrescine from sustainable biomass hydrolysates. ACS Sustainable Chem Eng. 2020;8(5):2147–2157.
  • Lu H, Villada JC, Lee PKH. Modular metabolic engineering for biobased chemical production. Trends Biotechnol. 2019;37(2):152–166.
  • Luo Z, Zeng W, Du G, et al. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synth Biol. 2019;8(4):787–795.
  • Wang M, Chen B, Fang Y, et al. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv. 2017;35(8):1032–1039.
  • Yang T, Rao Z, Zhang X, et al. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol. 2017;37(8):990–1005.
  • Ahmed MS, Lauersen KJ, Ikram S, et al. Efflux transporters' engineering and their application in microbial production of heterologous metabolites. ACS Synth Biol. 2021;10(4):646–669.
  • Luo Z, Liu S, Du G, et al. Enhanced pyruvate production in Candida glabrata by carrier engineering. Biotechnol Bioeng. 2018;115(2):473–482.
  • Xu Y, Guo J, Wang L, et al. The crystal structure of the YknZ extracellular domain of ABC transporter YknWXYZ from Bacillus amyloliquefaciens. PLoS One. 2016;11(5):e0155846.
  • Ji A, Wei X. Engineering of the non-phosphotransferase glucose transport system for enhancing L-tyrosine production in Bacillus amyloliquefaciens. Food Fermentation Ind. 2020;46(15):27–31.
  • Wu Y, Xu H, Cao X, et al. Bacillus amyloliquefaciens ameliorates H2O2-Induced oxidative damage by regulating transporters, tight junctions, and apoptosis gene expression in cell line IPEC-1. Probiotics Antimicrob Proteins. 2020;12(2):649–656.
  • Lindner SN, Seibold GM, Henrich A, et al. Phosphotransferase System-Independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol. 2011;77(11):3571–3581.
  • Koumoutsi A, Chen XH, Vater J, et al. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol. 2007;73(21):6953–6964.
  • Xu TL, Peng J, Zhu YL, et al. Yield enhancement of recombinant α-amylases in Bacillus amyloliquefaciens by ARTP mutagenesis-screening and medium optimization. JSM. 2019;48(5):965–974.
  • Ding Z, Ai L, Ouyang A, et al. A two-stage oxygen supply control strategy for enhancing milk-clotting enzyme production by Bacillus amyloliquefaciens. Eur Food Res Technol. 2012;234(6):1043–1048.
  • Schmitz AC, Hartline CJ, Zhang F. Engineering microbial metabolite dynamics and heterogeneity. Biotechnol J. 2017;12(10):1700422.
  • Li J, Zhu K, Miao L, et al. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering. ACS Synth Biol. 2021;10(4):884–896.
  • Xu Y, Cai D, Zhang H, et al. Enhanced production of iturin a in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem. 2020;90:50–57.
  • Shahzad R, Shehzad A, Bilal S, et al. Bacillus amyloliquefaciens RWL-1 as a new potential strain for augmenting biochemical and nutritional composition of fermented soybean. Molecules. 2020;25(10):2346.
  • Xue L, Sun B, Yang Y, et al. Efficiency and mechanism of reducing ammonia volatilization in alkaline farmland soil using Bacillus amyloliquefaciens biofertilizer. Environ Res. 2021;202:111672.
  • WoldemariamYohannes K, Wan Z, Yu Q, et al. Prebiotic, probiotic, antimicrobial, and functional food applications of Bacillus amyloliquefaciens. J Agric Food Chem. 2020;68(50):14709–14727.
  • Ruan L, Li L, Zou D, et al. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle. Biotechnol Biofuels. 2019;12:211.
  • Rane AS, Joshi RS, Giri AP. Molecular determinant for specificity: differential interaction of α-amylases with their proteinaceous inhibitors. Biochim Biophys Acta Gen Subj. 2020;1864(12):129703.
  • Wang P, Wang P, Tian J, et al. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep. 2016;6:22229.
  • Wibisana A, Sumaryono W, Sudiro M, Biotech Center-Badan Pengkajian dan Penerapan Teknologi, Gedung 630, Kawasan Puspiptek Serpong, Tangerang Selatan, Indonesia, et al. Optimization of surfactin production by Bacillus amyloliquefaciens MD4-12 using response surface methodology. Microbiol Indones. 2015;9(3):120–128.
  • Zhou Z, Zhang W, Zhang R, et al. Metabolic engineering of Bacillus Amyloliquefaciens to improve surfactin production. Acta Scientiarum Naturalium Universitatis Nankaiensis. 2018;51(5):18–26.
  • Zhao J, Zhang C, Lu J, et al. Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Can J Microbiol. 2016;62(5):431–436.
  • Luo Q, Wu J, Wu M. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem. 2014;49(8):1223–1230.
  • Wu Y, Zhou J, Li C, et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Microbiologyopen. 2019;8(8):e00813.
  • Etchegaray A, Coutte F, Chataigné G, et al. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination. Can J Microbiol. 2017;63(1):46–60.
  • Yang Z, Zhang Z. Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv. 2019;37(4):569–578.
  • Yang T, Rao Z, Zhang X, et al. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One. 2013;8(10):e76149.
  • Han J, Wang F, Li Z, et al. Isolation and identification of an osmotolerant Bacillus amyloliquefaciens strain T4 for 2, 3-butanediol production with tobacco waste. Prep Biochem Biotechnol. 2021;52(2):210–217.
  • Cao M, Geng W, Liu L, et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol. 2011;102(5):4251–4257.
  • Feng J, Gu Y, Quan Y, et al. Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens. Microb Cell Fact. 2017;16(1):98.
  • Qiu Y, Zhang Y, Zhu Y, et al. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing. Bioprocess Biosyst Eng. 2019;42(10):1711–1720.
  • Feng J, Gu Y, Quan Y, et al. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens. Sci Rep. 2015;5:13814–13814.
  • Cai G, Liu Y, Li X, et al. New levan-type exopolysaccharide from Bacillus amyloliquefaciens as an antiadhesive agent against enterotoxigenic Escherichia coli. J Agric Food Chem. 2019;67(28):8029–8034.
  • Phengnoi P, Charoenwongpaiboon T, Wangpaiboon K, et al. Levansucrase from Bacillus amyloliquefaciens KK9 and its Y237S variant producing the high bioactive levan-type fructooligosaccharides. Biomolecules. 2020;10(5):692.
  • Yang X, Zhang L, Xiang Y, et al. Comparative transcriptome analysis of Sclerotinia sclerotiorum revealed its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Sci Rep. 2020;10(1):12576.
  • Chen Y, Liu T, Li Q, et al. Screening for candidate genes associated with biocontrol mechanisms of Bacillus pumilus DX01 using Tn5 transposon mutagenesis and a 2-DE-based comparative proteomic analysis. Curr Microbiol. 2020;77(11):3397–3408.
  • Gupta A, Reizman IMB, Reisch CR, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35(3):273–279.
  • Chen B, Wen J, Zhao X, et al. Surfactin: a quorum-sensing signal molecule to relieve CCR in Bacillus amyloliquefaciens. Front Microbiol. 2020;11:631.
  • Wen J, Zhao X, Si F, et al. Surfactin, a quorum sensing signal molecule, globally affects the carbon metabolism in Bacillus amyloliquefaciens. Metab Eng Commun. 2021;12:e00174.
  • Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng. 2014;21:26–33.
  • Gong Z, Nielsen J, Zhou YJ. Engineering robustness of microbial cell factories. Biotechnol J. 2017;12(10):1700014.
  • Fletcher E, Feizi A, Bisschops MMM, et al. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng. 2017;39:19–28.
  • Wang H, Yang L, Ping Y, et al. Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS One. 2016;11(1):e0146373.
  • Cai D, Rao Y, Zhan Y, et al. Engineering bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol. 2019;126(6):1632–1642.
  • Cai D, Wang H, He P, et al. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Fact. 2017;16(1):70.
  • Gu Y, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng. 2018;50:109–121.
  • Skoczinski P, Volkenborn K, Fulton A, et al. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microb Cell Fact. 2017;16(1):160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.