697
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Bacterial genome reduction for optimal chassis of synthetic biology: a review

, , &
Pages 660-673 | Received 27 Jul 2022, Accepted 20 Feb 2023, Published online: 28 Jun 2023

References

  • Martinez-Garcia E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol. 2016;42:216–224.
  • Sung BH, Choe D, Kim SC, et al. Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem. 2016;60:337–346.
  • Chi H, Wang X, Shao Y, et al. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol. 2019;4:25–33.
  • Pelletier JF, Sun L, Wise KS, et al. Genetic requirements for cell division in a genomically minimal cell. Cell. 2021;184:2430–2440.e16.
  • Fredens J, Wang K, de la Torre D, et al. Total synthesis of Escherichia coli with a recoded genome. Nature. 2019;569:514–518.
  • Choe D, Cho S, Kim SC, et al. Minimal genome: worthwhile or worthless efforts toward being smaller? Biotechnol J. 2016;11:199–211.
  • Kurokawa M, Ying BW. Experimental challenges for reduced genomes: the cell model Escherichia coli. Microorganisms. 2019;8:3.
  • Peng C, Lin Y, Luo H, et al. A comprehensive overview of online resources to identify and predict bacterial essential genes. Front Microbiol. 2017;8:2331.
  • Zhou D, Jiang Z, Pang Q, et al. CRISPR/Cas9-assisted seamless genome editing in Lactobacillus plantarum and its application in N-acetylglucosamine production. Appl Environ Microbiol. 2019;85:e01367-19.
  • Yang P, Wang J, Qi Q. Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microb Cell Fact. 2015;14:154.
  • Wang X, Zhou H, Chen H, et al. Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci U S A. 2018;115:E4255–E4263.
  • Yin J, Zhu H, Xia L, et al. A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 2015;43:e36–e36.
  • Kolisnychenko V, Plunkett G, Herring CD, et al. Engineering a reduced Escherichia coli genome. Genome Res. 2002;12:640–647.
  • Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A. 2010;107:2646–2651.
  • Iwadate Y, Honda H, Sato H, et al. Oxidative stress sensitivity of engineered Escherichia coli cells with a reduced genome. FEMS Microbiol Lett. 2011;322:25–33.
  • Li Y, Zhu X, Zhang X, et al. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact. 2016;15:94.
  • Tsuchiya K, Cao YY, Kurokawa M, et al. A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiol. 2018;18:101.
  • Yuan X, Couto JM, Glidle A, et al. Single-cell microfluidics to study the effects of genome deletion on bacterial growth behavior. ACS Synth Biol. 2017;6:2219–2227.
  • Suzuki N, Inui M, Yukawa H. Random genome deletion methods applicable to prokaryotes. Appl Microbiol Biotechnol. 2008;79:519–526.
  • Shaw D, Miravet-Verde S, Pinero-Lambea C, et al. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol. 2021;14:2403–2419.
  • Vernyik V, Karcagi I, Timar E, et al. Exploring the fitness benefits of genome reduction in Escherichia coli by a selection-driven approach. Sci Rep. 2020;10:7345.
  • Goryshin IY, Naumann TA, Apodaca J, et al. Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res. 2003;13:644–653.
  • Tsuge Y, Suzuki N, Inui M, et al. Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2007;74:1333–1341.
  • Leprince A, de Lorenzo V, Voller P, et al. Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol. 2012;14:1444–1453.
  • Ma S, Su T, Liu J, et al. Reduction of the bacterial genome by transposon-mediated random deletion. ACS Synth Biol. 2022;11:668–677.
  • Ma S, Su T, Liu J, et al. Random genome reduction coupled with polyhydroxybutyrate biosynthesis to facilitate its accumulation in Escherichia coli. Front Bioeng Biotech. 2022;10:978211.
  • Hashimoto M, Ichimura T, Mizoguchi H, et al. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol. 2005;55:137–149.
  • Mizoguchi H, Sawano Y, Kato J, et al. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res. 2008;15:277–284.
  • Posfai G, Plunkett G, Feher T, et al. Emergent properties of reduced-genome Escherichia coli. Science. 2006;312:1044–1046.
  • Hirokawa Y, Kawano H, Tanaka-Masuda K, et al. Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. J Biosci Bioeng. 2013;116:52–58.
  • Park MK, Lee SH, Yang KS, et al. Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences. Appl Microbiol Biotechnol. 2014;98:6701–6713.
  • Umenhoffer K, Draskovits G, Nyerges A, et al. Genome-wide abolishment of mobile genetic elements using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a bacterial chassis. ACS Synth Biol. 2017;6:1471–1483.
  • van Tilburg AY, van Heel AJ, Stulke J, et al. MiniBacillus PG10 as a convenient and effective production host for lantibiotics. ACS Synth Biol. 2020;9:1833–1842.
  • Reuß DR, Altenbuchner J, Mäder U, et al. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res. 2017;27:289–299.
  • Michalik S, Reder A, Richts B, et al. The Bacillus subtilis minimal genome compendium. ACS Synth Biol. 2021;10:2767–2771.
  • Unthan S, Baumgart M, Radek A, et al. Chassis organism from Corynebacterium glutamicum a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J. 2015;10:290–301.
  • Baumgart M, Unthan S, Kloß R, et al. Corynebacterium glutamicum chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol. 2018;7:132–144.
  • Lieder S, Nikel PI, de Lorenzo V, et al. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact. 2015;14:23.
  • Liang P, Zhang Y, Xu B, et al. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications. Microb Cell Fact. 2020;19:70.
  • Bu QT, Yu P, Wang J, et al. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microb Cell Fact. 2019;18:16.
  • Antczak M, Michaelis M, Wass MN. Environmental conditions shape the nature of a minimal bacterial genome. Nat Commun. 2019;10:3100.
  • Luo H, Lin Y, Liu T, et al. DEG 15, an update of the database of essential genes that includes built-in analysis tools. Nucleic Acids Res. 2021;49:D677–D686.
  • Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008.
  • Ji Y, Zhang B, Horn SFV, et al. Identification of critical Staphylococcal genes using conditional phenotypes generated by antisense RNA. Science. 2001;293:2266–2269.
  • Gerdes SY, Scholle MD, Campbell JW, et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol. 2003;185:5673–5684.
  • Rousset F, Cui L, Siouve E, et al. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet. 2018;14:e1007749.
  • de Berardinis V, Vallenet D, Castelli V, et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 2008;4:174.
  • Nlebedim VU, Chaudhuri RR, Walters K. Probabilistic identification of bacterial essential genes via insertion density using TraDIS data with Tn5 libraries. Bioinformatics. 2021;37:4343–4349.
  • Goodall ECA, Robinson A, Johnston IG, et al. The essential genome of Escherichia coli K-12. mBio. 2018;9:e02096-17.
  • Cain AK, Barquist L, Goodman AL, et al. A decade of advances in transposon-insertion sequencing. Nat Rev Genet. 2020;21:526–540.
  • Gawronski JD, Wong SMS, Giannoukos G, et al. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A. 2009;106:16422–16427.
  • Lee SA, Gallagher LA, Thongdee M, et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2015;112:5189–5194.
  • Turner KH, Wessel AK, Palmer GC, et al. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci U S A. 2015;112:4110–4115.
  • Gurumayum S, Jiang P, Hao X, et al. OGEE v3: online GEne essentiality database with increased coverage of organisms and human cell lines. Nucleic Acids Res. 2021;49: d998–D1003.
  • Liu S, Wang SX, Liu W, et al. CEG 2.0: an updated database of clusters of essential genes including eukaryotic organisms. Database. 2020;2020:1–6.
  • Yu Y, Yang L, Liu Z, et al. Gene essentiality prediction based on fractal features and machine learning. Mol Biosyst. 2017;13:577–584.
  • Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol. 2020;58:1–10.
  • Hille F, Richter H, Wong SP, et al. The biology of CRISPR-Cas: backward and forward. Cell. 2018;172:1239–1259.
  • Cui Z, Zheng H, Zhang J, et al. A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica. Appl Environ Microbiol. 2021;87:e02666-20.
  • So Y, Park SY, Park EH, et al. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol. 2017;8:1167.
  • Huang C, Guo L, Wang J, et al. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering. Appl Microbiol Biotechnol. 2020;104:7943–7956.
  • Tian J, Xing B, Li M, et al. Efficient large-scale and scarless genome engineering enables the construction and screening of Bacillus subtilis biofuel overproducers. IJMS. 2022;23:4853.
  • Yu BJ, Sung BH, Koob MD, et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol. 2002;20:1018–1023.
  • Liu X, Liu M, Zhang J, et al. Mapping of nonhomologous end Joining-mediated integration facilitates genome-scale trackable mutagenesis in Yarrowia lipolytica. ACS Synth Biol. 2022;11:216–227.
  • Bertrand C, Thibessard A, Bruand C, et al. Bacterial NHEJ: a never ending story. Mol Microbiol. 2019;111:1139–1151.
  • Chayot R, Montagne B, Mazel D, et al. An end-joining repair mechanism in Escherichia coli. Proc Natl Acad Sci U S A. 2010;107:2141–2146.
  • Bhattacharyya S, Soniata MM, Walkera D, et al. Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase. Proc Natl Acad Sci U S A. 2018;115:e11614–E11622.
  • Cui Y, Dong H, Ma Y, et al. Strategies for applying nonhomologous end joining-mediated genome editing in prokaryotes. ACS Synth Biol. 2019;8:2194–2202.
  • Su T, Liu F, Gu P, et al. A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep. 2016;6:37895.
  • Zheng X, Li SY, Zhao GP, et al. An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Biochem Biophys Res Commun. 2017;485:768–774.
  • Huang C, Ding T, Wang J, et al. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Appl Microbiol Biotechnol. 2019;103:8497–8509.
  • Su T, Liu F, Chang Y, et al. The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining. Synth Syst Biotechnol. 2019;4:107–112.
  • Tong Y, Charusanti P, Zhang L, et al. CRISPR-Cas9 based engineering of Actinomycetal genomes. ACS Synth Biol. 2015;4:1020–1029.
  • Yan MY, Li SS, Ding XY, et al. A CRISPR-assisted nonhomologous end-joining strategy for efficient genome editing in Mycobacterium tuberculosis. mBio. 2020;11:e02364-19.
  • Csörgő B, León LM, Chau-Ly IJ, et al. A compact Cascade-Cas3 system for targeted genome engineering. Nat Methods. 2020;17:1183–1190.
  • Umenhoffer K, Feher T, Baliko G, et al. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications. Microb Cell Fact. 2010;9:38.
  • Csörgo B, Fehér T, Tímár E, et al. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs. Microb Cell Fact. 2012;11:11.
  • Ran H, Wu J, Wu D, et al. Enhanced production of recombinant Thermobifida fusca isoamylase in Escherichia coli MDS42. Appl Biochem Biotechnol. 2016;180:464–476.
  • Ronda C, Pedersen LE, Sommer MO, et al. CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep. 2016;6:19452.
  • Morimoto T, Kadoya R, Endo K, et al. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 2008;15:73–81.
  • Wenzel M, Altenbuchner J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. Microbiology (Reading). 2015;161:1942–1949.
  • Ara K, Ozaki K, Nakamura K, et al. Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem. 2007;46:169–178.
  • Manabe K, Kageyama Y, Morimoto T, et al. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol. 2011;77:8370–8381.
  • Manabe K, Kageyama Y, Morimoto T, et al. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact. 2013;12:18.
  • Toya Y, Hirasawa T, Morimoto T, et al. 13C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol. 2014;179:42–49.
  • Aguilar Suárez R, Stülke J, van Dijl JM. Less is more: toward a genome-reduced Bacillus cell factory for "difficult proteins. ACS Synth Biol. 2019;8:99–108.
  • Baumgart M, Unthan S, Rückert C, et al. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol. 2013;79:6006–6015.
  • Wendisch VF. Genome-reduced Corynebacterium glutamicum fit for biotechnological applications. In: Lara, AR, Gosset, G, editors. Minimal cells: design, construction, biotechnological applications. Switzerland: Springer Cham Press; 2020. p. 95–116.
  • Li L, Liu X, Jiang W, et al. Recent advances in synthetic biology approaches to optimize production of bioactive natural products in Actinobacteria. Front Microbiol. 2019;10:2467.
  • Kurokawa M, Seno S, Matsuda H, et al. Correlation between genome reduction and bacterial growth. DNA Res. 2016;23:517–525.
  • Karcagi I, Draskovits G, Umenhoffer K, et al. Indispensability of horizontally transferred genes and its impact on bacterial genome streamlining. Mol Biol Evol. 2016;33:1257–1269.
  • Manabe K, Kageyama Y, Tohata M, et al. High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis. Microb Cell Fact. 2012;11:74.
  • van Tilburg AY, Fulleborn JA, Reder A, et al. Unchaining miniBacillus strain PG10: relief of FlgM-mediated repression of autolysin genes. Appl Environ Microbiol. 2021;87:e0112321.
  • Nishimura I, Kurokawa M, Liu L, et al. Coordinated changes in mutation and growth rates induced by genome reduction. mBio. 2017;8:e00676-17.
  • Datta S, Costantino N, Zhou X, et al. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci U S A. 2008;105:1626–1631.
  • Chang Y, Wang Q, Su T, et al. Identification of phage recombinase function unit in genus Corynebacterium. Appl Microbiol Biotechnol. 2021;105:5067–5075.
  • Mosberg JA, Gregg CJ, Lajoie MJ, et al. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One. 2012;7:e44638.
  • Xue X, Wang T, Jiang P, et al. MEGA (multiple essential genes assembling) deletion and replacement method for genome reduction in Escherichia coli. ACS Synth Biol. 2015;4:700–706.
  • Zhou J, Wu R, Xue X, et al. CasHRA (Cas9-facilitated homologous recombination assembly) method of constructing megabase-sized DNA. Nucleic Acids Res. 2016;44:e124.
  • Hutchison CA, Chuang RY, Noskov VN, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351:aad6253.
  • Choe D, Lee JH, Yoo M, et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun. 2019;10:935.
  • Hemmerich J, Labib M, Steffens C, et al. Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion. Microb Biotechnol. 2020;13:2020–2031.
  • Zhang J, Pang Q, Wang Q, et al. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol. 2022;42:1010–1027.
  • Pang Q, Han H, Liu X, et al. In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production. Metab Eng. 2020;59:36–43.
  • Xu X, Li X, Liu Y, et al. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nat Chem Biol. 2020;16:1261–1268.
  • Zhu Y, Li Y, Xu Y, et al. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metab Eng. 2021;68:142–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.